日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•房山區(qū)一模)下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是(  )
          分析:根據(jù)題意,將x用-x代替判斷解析式的情況利用偶函數(shù)的定義判斷出為偶函數(shù),然后根據(jù)反比例函數(shù)、對(duì)數(shù)函數(shù)、二次函數(shù)、三角數(shù)函數(shù)進(jìn)行判定單調(diào)性即可得到結(jié)論.
          解答:解:對(duì)于y=-
          1
          x
          函數(shù)的定義域?yàn)閧x|x≠0},f(-x)=-f(x),則該函數(shù)為奇函數(shù),A不合題意
          對(duì)于y=e|x|函數(shù)的定義域?yàn)閤∈R,將x用-x代替函數(shù)的解析式不變,
          所以y=e|x|是偶函數(shù),但函數(shù)y=e|x|在(0,+∞)上單調(diào)單調(diào)遞增,B符合題意
          對(duì)于y=-x2+3函數(shù)的定義域?yàn)閤∈R,將x用-x代替函數(shù)的解析式不變,
          所以y=-x2+3是偶函數(shù),但函數(shù)y=-x2+3在(0,+∞)上單調(diào)單調(diào)遞減,C不合題意
          對(duì)于y=cosx函數(shù)的定義域?yàn)閤∈R,將x用-x代替函數(shù)的解析式不變,
          所以y=cosx是偶函數(shù),但函數(shù)y=cosx在(0,+∞)上不單調(diào),D不合題意
          故選B.
          點(diǎn)評(píng):本題主要考查了奇函數(shù)、偶函數(shù)的定義,以及常見函數(shù)的單調(diào)性的判定,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•房山區(qū)一模)已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且cosA=
          2
          5
          5
          ,cosB=
          3
          10
          10

          (Ⅰ)求cos(A+B)的值;
          (Ⅱ)設(shè)a=
          10
          ,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•房山區(qū)一模)如果在一周內(nèi)安排三所學(xué)校的學(xué)生參觀某展覽館,每天最多只安排一所學(xué)校,要求甲學(xué)校連續(xù)參觀兩天,其余兩所學(xué)校均只參觀一天,那么不同的安排方法共有
          120
          120
          種.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•房山區(qū)一模)一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為
          2
          3
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•房山區(qū)一模)已知橢圓G的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)為A(0,-1),離心率為
          6
          3

          (I)求橢圓G的方程;
          (II)設(shè)直線y=kx+m與橢圓相交于不同的兩點(diǎn)M,N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案