【題目】已知數(shù)列滿足
記數(shù)列
的前
項(xiàng)和為
,
(1)求證:數(shù)列為等比數(shù)列,并求其通項(xiàng)
;
(2)求;
(3)問是否存在正整數(shù),使得
成立?說明理由.
【答案】(1) (2)
(3)當(dāng)
為偶數(shù)時,
都成立,(3)詳見解析
【解析】試題分析:(1),所以
為等比數(shù)列,又
,所以
;(2)
,所以
,分奇偶討論,當(dāng)
為奇數(shù)時,可令
,當(dāng)
為偶數(shù)時,可令
;(3)
,當(dāng)
為偶數(shù)時,
成立 .
試題解析:
因?yàn)?/span>
,
即 ,所以
。
(2) ,所以
,
當(dāng)為奇數(shù)時,可令
則
,
當(dāng)為偶數(shù)時,可令
則
;
(3)假設(shè)存在正整數(shù) ,使得
成立,
因?yàn)?/span> ,
,
所以只要
即只要滿足 ①: ,和②:
,
對于①只要 就可以;
對于②,
當(dāng) 為奇數(shù)時,滿足
,不成立,
當(dāng) 為偶數(shù)時,滿足
,即
令 ,
因?yàn)?/span>
即 ,且當(dāng)
時,
,
所以當(dāng) 為偶數(shù)時,②式成立,即當(dāng)
為偶數(shù)時,
成立 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+2ex+m﹣1,g(x)=x+ (x>0).
(1)若y=g(x)﹣m有零點(diǎn),求m的取值范圍;
(2)確定m的取值范圍,使得g(x)﹣f(x)=0有兩個相異實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的分別為14,18,則輸出的
為( )
A. 0 B. 2 C. 4 D. 14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過定點(diǎn)P(2,1).
(1)求經(jīng)過點(diǎn)P且在兩坐標(biāo)軸上的截距相等的直線方程;
(2)若過點(diǎn)P的直線l與x軸和y軸的正半軸分別交于A,B兩點(diǎn),求△AOB面積的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C: 的左焦點(diǎn)為F,過點(diǎn)F的直線與橢圓C相交于A,B兩點(diǎn),直線l的傾斜角為60°,
.
(1)求橢圓C的離心率;
(2)如果|AB|= ,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一條光線經(jīng)過P(2,3)點(diǎn),射在直線l:x+y+1=0上,反射后穿過點(diǎn)Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足3(n+1)an=nan+1(n∈N*),且a1=3,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)若 =
,求證:
≤
+
+…+
<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則1<t<4;
②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓;
④若 ,曲線C為橢圓,且焦點(diǎn)坐標(biāo)為
;
⑤若t<1,曲線C為雙曲線,且虛半軸長為 .
其中真命題的序號為 . (把所有正確命題的序號都填在橫線上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com