日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,正方形ABCD中,點P在邊CD上,現(xiàn)有質(zhì)地均勻的粒子散落在正方形ABCD內(nèi),則粒子落在△PBA內(nèi)的概率等于( 。
          分析:我們分別求出三角形區(qū)域的面積,并求出正方形面積面積用來表示全部基本事件,再代入幾何概型公式,即可求解.
          解答:解:因為均勻的粒子落在正方形內(nèi)任何一點是等可能的
          所以符合幾何概型的條件.
          設(shè)A=“粒子落在三角形區(qū)域”則依題意得
          正方形面積為:a×a=a2
          三角形的面積為:
          1
          2
          ×
          a×a=
          1
          2
          a2,
          ∴P(A)=
          1
          2
          a2

          則粒子落在三角形區(qū)域的概率是
          1
          2
          a2
          a2
           
          =
          1
          2

          故答案為:A
          點評:本題考查的知識點是幾何概型的意義,簡單地說,如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱為幾何概型.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
          2
          ,CE=EF=1.
          (Ⅰ)求證:AF∥平面BDE;
          (Ⅱ)求證:CF⊥平面BDE;
          (Ⅲ)求二面角A-BE-D的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          8、如圖把正方形ABCD沿對角線BD折成直二面角,對于下面結(jié)論:
          ①AC⊥BD;
          ②CD⊥平面ABC;
          ③AB與BC成60°角;
          ④AB與平面BCD成45°角.
          則其中正確的結(jié)論的序號為
          ①③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,正方形ABCD、ABEF的邊長都是1,而且平面ABCD、ABEF互相垂直,點M在AC上移動,點N在BF上移動,若CM=BN=a(0<a<
          2
          ),則MN的長的最小值為 ( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,正方形ABCD所在平面與等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
          (I)求證:AB⊥平面ADE;
          (II)(理)在線段BE上存在點M,使得直線AM與平面EAD所成角的正弦值為
          6
          3
          ,試確定點M的位置.
          (文)若AD=2,求四棱錐E-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2010•溫州二模)如圖,正方形ABCD與正方形CDEF所成的二面角為60°,則直線EC與直線AD所成的角的余弦值為
          2
          4
          2
          4

          查看答案和解析>>

          同步練習(xí)冊答案