(本小題滿分12分)
正項數(shù)列的首項為
,
時,
,數(shù)列
對任意
均有
(1)若,求證:數(shù)列
是等差數(shù)列;
(2)已知,數(shù)列
滿足
,記數(shù)列
的前
項和為
,求證
.
科目:高中數(shù)學 來源: 題型:解答題
楊輝是中國南宋末年的一位杰出的數(shù)學家、數(shù)學教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關,楊輝三角中蘊藏了許多優(yōu)美的規(guī)律。下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14個數(shù)與第15個數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35。顯然,1+3+6+10+15=35。事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù)。試用含有m、k的數(shù)學公式表示上述結(jié)論,并給予證明。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
已知數(shù)列的前 n項和為
,滿足
,且
.
(Ⅰ)求,
;
(Ⅱ)若,求證:數(shù)列
是等比數(shù)列。
(Ⅲ)若 , 求數(shù)列
的前n項和
。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列中,
,數(shù)列
滿足
。
(1)求證:數(shù)列是等差數(shù)列;
(2)求數(shù)列中的最大項和最小項,并說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)在數(shù)列中,
,并且對于任意n∈N*,都有
.
(1)證明數(shù)列為等差數(shù)列,并求
的通項公式;
(2)設數(shù)列的前n項和為
,求使得
的最小正整數(shù)
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知二次函數(shù)同時滿足:①不等式
的解集有且只有一個元素;②在定義域內(nèi)存在
,使得不等式
成立.
設數(shù)列的前
項和
,
(1)求數(shù)列的通項公式;
(2)數(shù)列中,令
,
,求
;
(3)設各項均不為零的數(shù)列中,所有滿足
的正整數(shù)
的個數(shù)稱為這個數(shù)列
的變號數(shù)。令
(
為正整數(shù)),求數(shù)列
的變號數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列的前n項和
滿足
(
>0,且
)。數(shù)列
滿足
(I)求數(shù)列的通項。
(II)若對一切都有
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知曲線:
,數(shù)列
的首項
,且當
時,點
恒在曲線
上,數(shù)列
滿足
。
(1)試判斷數(shù)列是否是等差數(shù)列?并說明理由;
(2)求數(shù)列和
的通項公式;
(3)設數(shù)列滿足
,試比較數(shù)列
的前
項和
與2的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com