日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P是側(cè)棱CC1上的一點(diǎn),CP=m.
          (1)試確定m,使直線AP與平面BDD1B1所成角的正切值為;
          (2)在線段A1C1上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的m,D1Q在平面APD1上的射影垂直于AP,并證明你的結(jié)論.

          【答案】分析:(1)連AC,設(shè)AC與BD相交于點(diǎn)O,AP與平面BDD1B1相交于點(diǎn),連接OG,證明AO⊥平面BDD1B1,說(shuō)明∠AGO是AP與平面BDD1B1所成的角.在Rt△AOG中,利用直線AP與平面BDD1B1所成的角的正切值為.求出m的值.
          (2)點(diǎn)Q應(yīng)當(dāng)是AICI的中點(diǎn),使得對(duì)任意的m,D1Q在平面APD1上的射影垂直于AP,通過(guò)證明 D1O1⊥平面ACC1A1,D1O1⊥AP.利用三垂線定理推出結(jié)論.
          解答:解:(1)連AC,設(shè)AC與BD相交于點(diǎn)O,AP與平面BDD1B1相交于點(diǎn)G,
          連接OG,因?yàn)镻C∥平面BDD1B1,平面BDD1B1∩平面APC=OG,
          故OG∥PC,所以,OG=PC=
          又AO⊥BD,AO⊥BB1,所以AO⊥平面BDD1B1
          故∠AGO是AP與平面BDD1B1所成的角.
          在Rt△AOG中,tan∠AGO=,即m=
          所以,當(dāng)m=時(shí),直線AP與平面BDD1B1所成的角的正切值為
          (2)可以推測(cè),點(diǎn)Q應(yīng)當(dāng)是AICI的中點(diǎn),當(dāng)是中點(diǎn)時(shí)
          因?yàn)镈1O1⊥A1C1,且 D1O1⊥A1A,A1C1∩A1A=A1
          所以 D1O1⊥平面ACC1A1,
          又AP?平面ACC1A1,故 D1O1⊥AP.
          那么根據(jù)三垂線定理知,D1O1在平面APD1的射影與AP垂直.
          點(diǎn)評(píng):本題考查直線與平面所成的角,考查直線與平面垂直的判定,三垂線定理的應(yīng)用,考查空間想象能力,邏輯推理能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
          (1)求證:DE∥平面ABC;
          (2)求證:B1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
          (1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
          值.
          (2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
          (1)求證:DE∥平面ABC;
          (2)求證:B1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省南京市金陵中學(xué)高三(上)8月月考數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
          (1)求證:DE∥平面ABC;
          (2)求證:B1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

          如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
          (1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
          值.
          (2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案