日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lg(
          2a1+x
          -1)
          (其中a>0).求證:
          (1)用反證法證明函數(shù)f(x)不能為偶函數(shù);
          (2)函數(shù)f(x)為奇函數(shù)的充要條件是a=1.
          分析:(1)假設(shè)函數(shù)f(x)為偶函數(shù),則f(-x)=f(x),代入利用對(duì)數(shù)的性質(zhì),可得矛盾,即可得證;
          (2)分充分性、必要性進(jìn)行論證,即可得到結(jié)論.
          解答:證明:(1)假設(shè)函數(shù)f(x)為偶函數(shù),則f(-x)=f(x),
          lg(
          2a
          1-x
          -1)
          =lg(
          2a
          1+x
          -1)
          ,即
          2a
          1-x
          -1
          =
          2a
          1+x
          -1
          ,化簡得:
          4ax
          1-x2
          =0

          ∴a=0,與條件a>0矛盾,
          ∴函數(shù)f(x)不能為偶函數(shù).…(7分)
          (2)充分性:由a=1,函數(shù)f(x)=lg(
          2
          1+x
          -1)
          =lg
          1-x
          1+x
          ,
          1-x
          1+x
          >0,∴-1<x<1,
          又f(x)+f(-x)=lg
          1-x
          1+x
          +lg
          1+x
          1-x
          =lg1=0,
          ∴當(dāng)a=1時(shí),函數(shù)f(x)為奇函數(shù).…(10分)
          必要性:由函數(shù)f(x)為奇函數(shù),即f(x)+f(-x)=0,
          ∴f(x)+f(-x)=lg(
          2a-1-x
          1+x
          )
          +lg(
          2a-1+x
          1-x
          )
          =0,化簡得(2a-1)2=1,
          ∵a>0,∴a=1,
          ∴當(dāng)函數(shù)f(x)為奇函數(shù)時(shí),a=1.…(14分)
          (注:必要性的證明也可由定義域的對(duì)稱性得到a=1)
          點(diǎn)評(píng):本題考查反證法,考查充要性的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1
          3
          x3-
          3
          2
          ax2-(a-3)x+b

          (1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
          (2)當(dāng)a<3時(shí),令g(x)=
          f′(x)
          x
          ,求y=g(x)在[l,2]上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1
          2
          x2-alnx
          的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
          (1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
          (2)當(dāng)x∈[
          1
          e
          ,e]
          時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=lnx,g(x)=
          12
          x2+a
          (a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
          (1)求直線l的方程及a的值;
          (2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          13
          x3+x2+ax

          (1)討論f(x)的單調(diào)性;
          (2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x3-
          32
          ax2+b
          ,a,b為實(shí)數(shù),x∈R,a∈R.
          (1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
          (2)在(1)的條件下,求經(jīng)過點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
          (3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案