日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列{an}的前n項(xiàng)和Sn滿足Sn-Sn-1=
          Sn
          +
          Sn-1
          (n≥2),a1=1.
          (1)證明:數(shù)列{
          Sn
          }
          是等差數(shù)列.并求數(shù)列{an}的通項(xiàng)公式;
          (2)若bn=
          1
          anan+1
          ,Tn=b1+b2+…+bn,求證:Tn
          1
          2
          分析:(1)利用平方差公式對(duì)題設(shè)中的等式化簡(jiǎn)整理求得
          sn?
           -
          sn-1?
          =1
          ,進(jìn)而根據(jù)等差數(shù)列的定義判斷出數(shù)列{
          sn?
          }
          是一個(gè)首項(xiàng)為1公差為1的等差數(shù)列.進(jìn)而根據(jù)首項(xiàng)和公差求得數(shù)列{
          sn?
          }
          的通項(xiàng)公式,進(jìn)而根據(jù)an=Sn-Sn-1求得an
          (2)把(1)中的an代入bn,進(jìn)而根據(jù)裂項(xiàng)法求得前n項(xiàng)的和,求得Tn=
          1
          2
          (1-
          1
          2n+1
          )
          ,進(jìn)而利用1-
          1
          2n+1
          <1
          推斷出Tn
          1
          2
          ,原式得證.
          解答:解:(1)∵Sn-Sn-1=(
          Sn
          -
          Sn-1
          )(
          Sn
          +
          Sn-1
          )=
          Sn
          +
          Sn-1
          ,(n≥2)
          又bn≥o,
          sn
           >0
          ,∴
          sn?
           -
          sn-1?
          =1
          ,
          S1
          =
          a1
          =1
          ,所以數(shù)列{
          sn?
          }
          是一個(gè)首項(xiàng)為1公差為1的等差數(shù)列.
          sn?
          =1+(n-1)×1=n
          ,sn=n2
          當(dāng)n≥2,an=Sn-Sn-1=n2-(n-1)2=2n-1;a1=1適合上式,∴an=2n-1(n∈N).
          (2)bn=
          1
          anan+1
          =
          1
          (2n-1)(2n+1)
          =
          1
          2
          (
          1
          2n-1
          -
          1
          2n+1
          )
          ,
          Tn=b1+b2++bn
          1
          2
          (1-
          1
          3
          )+
          1
          2
          (
          1
          3
          -
          1
          5
          )+
          1
          2
          (
          1
          5
          -
          1
          7
          )+…+
          1
          2
          (
          1
          2n-1
          -
          1
          2n+1
          )

          =
          1
          2
          (1-
          1
          3
          +
          1
          3
          -
          1
          5
          +
          1
          5
          -
          1
          7
          ++
          1
          2n-1
          -
          1
          2n+1
          )

          =
          1
          2
          (1-
          1
          2n+1
          )

          ∵n∈N,∴
          1
          2n+1
          >0
          ,1-
          1
          2n+1
          <1
          1
          2
          (1-
          1
          2n+1
          )<
          1
          2
          ,即Tn
          1
          2
          點(diǎn)評(píng):本題主要考查了等差關(guān)系的確定和數(shù)列的求和,數(shù)列和不等式的綜合運(yùn)用.作為高考的必考內(nèi)容,數(shù)列題常與不等式,函數(shù)等問(wèn)題綜合考查,綜合性較強(qiáng).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
          Tn
          ak
          (n,k∈N+,k≤n),則數(shù)列
          SnTn
          Tn(1)+Tn(2)+…+Tn(n)
          的前n項(xiàng)的和是
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          (用a1和q表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若數(shù)列{an}的通項(xiàng)an=
          1
          pn-q
          ,實(shí)數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
          (1)求證:當(dāng)n≥2時(shí),pan<an-1;
          (2)求證sn
          p
          (p-1)(p-q)
          (1-
          1
          pn
          )
          ;
          (3)若an=
          1
          (2n-1)(2n+1-1)
          ,求證sn
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
          a
          2
          n
          +an
          2
          ,n∈N*
          (1)求證:{an}是等差數(shù)列;
          (2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
          1
          2
          ,
          1
          3
          ,
          2
          3
          ,
          1
          4
          ,
          2
          4
          3
          4
          ,
          1
          5
          ,
          2
          5
          ,
          3
          5
          ,
          4
          5
          …,
          1
          n
          ,
          2
          n
          ,…,
          n-1
          n
          ,…有如下運(yùn)算和結(jié)論:
          ①a24=
          3
          8
          ;
          ②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
          ③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為T(mén)n=
          n2+n
          4
          ;
          ④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
          5
          7

          其中正確的結(jié)論是
          ①③④
          ①③④
          .(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          給出下列命題:
          ①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
          ②在△ABC中,如果A=60°,a=
          6
          ,b=4
          ,那么滿足條件的△ABC有兩解;
          ③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
          ④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能?chē)傻恼切蚊娣e都相等.
          其中真命題的序號(hào)是

          查看答案和解析>>

          同步練習(xí)冊(cè)答案