日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在底面是矩形的四棱錐中,⊥平面,,的中點.

          (Ⅰ)求證:平面⊥平面;

          (Ⅱ)求二面角的余弦值.

          (Ⅰ),.………2分 ,    .

               而,    .                     ……………4分

          .                                           ……………………6分

          (Ⅱ)設平面的法向量=,令,則.

          =.                         ………………11分

          平面的法向量=(0,0,2) .

          所以二面角所成平面角的余弦值是

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2012•惠州模擬)如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中點.
          (1)求證:平面PDC⊥平面PAD;
          (2)求二面角E-AC-D所成平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD,PA=AB=2,BC=4.
          (Ⅰ)求證:平面PDC⊥平面PAD;
          (Ⅱ)在BC邊上是否存在一點M,使得D點到平面PAM的距離為2,若存在,求BM的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2010•通州區(qū)一模)如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD,E、F分別是PC、PD的中點,求證:
          (Ⅰ)EF∥平面PAB;
          (Ⅱ)平面PAD⊥平面PDC.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中點
          (1)求證:平面PDC⊥平面PAD;
          (2)求三棱錐P-AEC的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥面ABCD,PA=AB=1,BC=2.
          (1)若E為PD的中點,求異面直線AE與PC所成角的余弦值;
          (2)在BC上是否存在一點G,使得D到平面PAG的距離為1?若存在,求出BG;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案