日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列{an}中,

          (1)試判斷數(shù)列{}是否為等差數(shù)列;

          (2)設(shè){bn}滿足bn,求數(shù)列{bn}的前n項(xiàng)為Sn

          (3)若,對任意n≥2的整數(shù)恒成立,求實(shí)數(shù)λ的取值范圍.

          解:(1)∵a1≠0,∴an≠0,

          ∴由已知可得

          故數(shù)列{}是等差數(shù)列.

          (2)由(1)的結(jié)論可得bn=1+(n-1)×3,

          所以bn=3n-2,

          Cn的最小值為C2

          λ的取值范圍是(-∞,].

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          1、已知點(diǎn)(n,an)(n∈N*)都在直線3x-y-24=0上,那么在數(shù)列an中有a7+a9=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中,a1=2,an+1=an+ln(1+
          1n
          )
          ,則an=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          14、在數(shù)列{an}中,若a1=1,an+1=an+2(n≥1),則該數(shù)列的通項(xiàng)an=
          2n-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}中a1=
          1
          2
          a2=
          1
          5
          ,且an+1=
          (n-1)an
          n-2an
          (n≥2)

          (1)求a3、a4,并求出數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)bn=
          anan+1
          an
          +
          an+1
          ,求證:對?n∈N*,都有b1+b2+…bn
          3n-1
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          一般地,在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對任意正整數(shù)m均成立,那么就稱{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),設(shè)S2009為其前2009項(xiàng)的和,則當(dāng)數(shù)列{xn}的周期為3時(shí),S2009=
          1339+a
          1339+a

          查看答案和解析>>

          同步練習(xí)冊答案