日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知n∈N*,且展開式中前三項(xiàng)系數(shù)成等差數(shù)列.
          (1)求n;
          (2)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
          (3)若,求a+a1+…+an的值.
          【答案】分析:(1)根據(jù)通項(xiàng)公式和題中條件求得,由此解得n的值.
          (2)由(1)知,二項(xiàng)式系數(shù)最大的值為,為第五項(xiàng),利用通項(xiàng)公式求得第五項(xiàng).
          (3)分析所給代數(shù)式的特點(diǎn),通過給二項(xiàng)式的x賦值,求展開式的系數(shù)和.
          解答:解:(1)由于二項(xiàng)式的通項(xiàng)公式為Tr+1= xn-r=•xr
          則由題意得,…(2分)
          解得n=8.…(4分)
          (2)由(1)知,二項(xiàng)式系數(shù)最大的值為,為第五項(xiàng).…(6分)
          .…(8分)
          (3)∵,…(9分)
          ,…(10分)
          .…(12分)
          點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過給二項(xiàng)式的x賦值,求展開式的系數(shù)和,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
          (1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
          (2)求BM+MN+NB的最小值.
          (3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          原有m個(gè)同學(xué)準(zhǔn)備展開通信活動(dòng),每人必須給另外(m-1)個(gè)同學(xué)寫1封信,后來又有n個(gè)同學(xué)對(duì)活動(dòng)感興趣,若已知5>n>1,且由于增加了n個(gè)同學(xué)而多寫了74封信,則原有同學(xué)人數(shù)m=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市新龍中學(xué)高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
          (1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
          (2)求BM+MN+NB的最小值.
          (3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市新龍中學(xué)高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
          (1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
          (2)求BM+MN+NB的最小值.
          (3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年廣東省廣州89中學(xué)高一(上)期末數(shù)學(xué)復(fù)習(xí)試卷(必修1、2)(解析版) 題型:解答題

          如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
          (1)將側(cè)面沿AB展開在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
          (2)求BM+MN+NB的最小值.
          (3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

          查看答案和解析>>

          同步練習(xí)冊(cè)答案