日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          函數y=(2a2-3a+2)ax是指數函數,則a的值是( 。
          A.a>0,a≠1B.a=1C.a=
          1
          2
          D.a=1或a=
          1
          2
          ∵函數y=(2a2-3a+2)ax是指數函數,∴
          2a2-3a+2=1
          0<a<1或a>1
          ,解得a=
          1
          2

          故選C.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          設函數y=f(x)的定義域為(0,+∞),且對任意的正實數x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當x>1時,f(x)>0.
          (1)求f(
          1
          2
          )
          的值,試判斷y=f(x)在(0,+∞)上的單調性,并加以證明;
          (2)一個各項均為正數的數列{an},它的前n項和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求數列{an}的通項公式;
          (3)在(2)的條件下,是否存在實數M,使2na1a2an≥M•
          2n+3
          •(2a1-1)•(2a2-1)…(2an-1)
          對于一切正整數n均成立?若存在,求出M的范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知二次函數k≤1圖象經過坐標原點,其導函數為f′(x)=6x-2,數列{an}的前n項和為Sn,點(n,Sn)(n∈N*)均在函數y=f(x)的圖象上;又b1=1,cn=
          1
          3
          (an+2),且1+2a2+22b3+…+2n-2bn-1+2n-1bn=cn,對任意n∈N*都成立,
          (1)求數列{an},{bn}的通項公式;
          (2)求數列{cn•bn}的前n項和Tn;
          (3)求證:(i)ln(x+1)<(x>0);(ii)
          n
          i=2
          lnai
          ai2
          2n2-n-1
          4(n+1)
          (n∈N*,n≥2).

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          已知函數y=f(x)的定義域為(4a-3,3-2a2),且y=f(2x-3)為偶函數,則實數a的值為( 。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          函數y=ln(aex-x+2a2-3)(e為自然對數的底數)的值域是實數集R,則實數a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          下列命題中真命題的序號是
           

          ①函數y=f(-x+2)與y=f(x-2)的圖象關于y軸對稱;
          ②若(2x-3)4=a0+a1x+a2x2+a3x3+a4x4,則a1+2a2+3a3+4a4=8;
          ③函數f(x)有f(x)=f(x+1)f(x-1),則f(2013)f(0)=1;
          ④若f(1-x)=-f(x+1),則函數y=f(x-1)的圖象關于點(2,0)對稱.

          查看答案和解析>>

          同步練習冊答案