日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
          (1)當平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
          值.
          (2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

          【答案】分析:(1)要求平面OBC轉(zhuǎn)過角,即求平面OBC與平面α所成的角度,可轉(zhuǎn)化為求平面ABC與平面COB所成的角;在四面體中,取BC中點為E,連接AE,EO,則BC⊥AE,BC⊥EO,∠AEO即為所求的轉(zhuǎn)動角;根據(jù)AE=EO=,AO=2,即可求出∠AEO
          (2)法一:設(shè)A在平面OBC上射影為G,若O1P⊥平面OBC,則O1P∥AG,設(shè)O1P交OE于H,則由OH:OO1=OO1:OE,可求得OH=OG
          故H與G重合時,O1P⊥平面OBC.
          法二:以O(shè)1為原點,分別以O(shè)1C1、O1O、O1E所在直線為x,y,z軸建立空間直角坐標系,設(shè)
          則由可求z,H與G重合時,O1P⊥平面OBC.
          解答:解:(1)∵平面ABC∥平面α
          平面ABC∩平面COB=BC
          取BC中點為E,連接AE,EO,則BC⊥AE,BC⊥EO.
          故∠AEO即為所求的轉(zhuǎn)動角
          在正四面體中,AE=EO=,AO=2,
          所以:COS∠AEO==
          ∴sin∠EOF=
          故所求轉(zhuǎn)過角的正弦值為
          (2)解法一:在Rt△OBB1中,OB=2BB1,
          故BB1=O1E=1,,.設(shè)A在平面OBC上射影為G,
          若O1P⊥平面OBC,則O1P∥AG,
          設(shè)O1P交OE于H,OH:OO1=OO1:OE,
          ,又
          故H與G重合時,O1P⊥平面OBC.
          解法二:以O(shè)1為原點,分別以O(shè)1C1、O1O、O1E所在直線為x,y,z軸建立空間直角坐標系,
          ,C(1,0,1),B(-1,0,1),,
          設(shè)
          ,,
          得z=2.…(13分)
          故H與G重合時,O1P⊥平面OBC.
          點評:本題主要考查了二面角得平面角得求解,直線與平面垂直的性質(zhì)定理得應(yīng)用,要注意向量法在解題中應(yīng)用.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (2013•大連一模)如圖,正三棱柱ABC-A1B1C1中,底面邊長為2,側(cè)棱長為
          2
          ,D為A1C1中點.
          (Ⅰ)求證;BC1∥平面AB1D;
          (Ⅱ)三棱錐B-AB1D的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
          (1)當平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
          值.
          (2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年安徽省合肥八中高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

          如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
          (1)當平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
          值.
          (2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年江西省贛州三中、于都中學高三聯(lián)合考試數(shù)學試卷(理科)(解析版) 題型:解答題

          如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
          (1)當平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
          值.
          (2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

          查看答案和解析>>

          同步練習冊答案