日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知焦點(diǎn)在x軸上的橢圓
          x2
          4
          +
          y2
          b2
          =1,(b>0)
          F1,F(xiàn)2是它的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P,使
          PF1
          PF2
          =0
          ,則b的取值范圍是
           
          分析:先證:若B為橢圓短軸端點(diǎn),則∠F1PF2≤∠F1BF2.記∠F1PF2=θ,
          |PF1|=r1,|PF2|=r2,cosθ=
          4a2 -4c2
          2r1r2
          -1
          推出cosθ≥
          a2+a2-4c2
          2a2
          =cos∠F1BF2,即∠F1PF2≤∠F1BF2
          利用結(jié)論,題中橢圓上存在點(diǎn)P,使得∠F1PF2=900,當(dāng)且僅當(dāng)∠F1BF2≥900,推出b∈(0,
          2
          ].
          解答:解:先證一個(gè)結(jié)論:若B為橢圓短軸端點(diǎn),則∠F1PF2≤∠F1BF2.記∠F1PF2=θ,
          |PF1|=r1,|PF2|=r2,cosθ=
          r12+r22-4c2
          2r1r2
          =
          (r1 +r2)2-2r1r2-4c2
          2r1r2
          =
          4a2 -4c2
          2r1r2
          -1

          又r1r2≤(
          r1+r2
          2
          2=a2,∴cosθ≥
          a2+a2-4c2
          2a2
          =cos∠F1BF2,當(dāng)且僅當(dāng)r1=r2時(shí)等號(hào)成立,
          即∠F1PF2≤∠F1BF2.題中橢圓上存在點(diǎn)P,使得∠F1PF2=900,當(dāng)且僅當(dāng)∠F1BF2≥900,即
          cos∠F1BO≤
          2
          2
          等價(jià)于b≤
          2
          2
          a=
          2
          ,∴b∈(0,
          2
          ].
          故答案為:(0,
          2
          ].
          點(diǎn)評(píng):本題考查橢圓的應(yīng)用,考查分析問題解決問題的能力,計(jì)算能力邏輯思維能力,是難題,考查轉(zhuǎn)化思想.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
          (1)當(dāng)m=1時(shí),求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx(0≤x≤
          2m
          3
          )
          和橢圓弧
          x2
          4m2
          +
          y2
          3m2
          =1
          (
          2m
          3
          ≤x≤2m)

          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•懷化二模)如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為
          3
          2
          的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對(duì)應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

          現(xiàn)給出下列5個(gè)命題①f(
          k
          2
          )=6
          ;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
          k
          2
          ,0)
          對(duì)稱;⑤函數(shù)f(m)=3
          3
          時(shí)AM過橢圓的右焦點(diǎn).其中所有的真命題是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044

          解答題

          已知橢圓=1的焦點(diǎn)為F1、F2,能否在x軸下方的橢圓弧上找到一點(diǎn)M,使M到下準(zhǔn)線的距離|MN|等于點(diǎn)M到焦點(diǎn)F1、F2的距離的比例中項(xiàng)?若存在,求出M點(diǎn)坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年湖南省懷化市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

          如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對(duì)應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

          現(xiàn)給出下列5個(gè)命題①;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)對(duì)稱;⑤函數(shù)時(shí)AM過橢圓的右焦點(diǎn).其中所有的真命題是( )
          A.①③⑤
          B.②③④
          C.②③⑤
          D.③④⑤

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
          (1)當(dāng)m=1時(shí),求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx和橢圓弧
          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案