日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
          (1)對(duì)任意的x∈[0,1],總有f(x)>0;
          (2)f(1)=1;
          (3)若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立,則稱f(x)為“友誼函數(shù)”,請(qǐng)解答下列各題:
          ①若已知f(x)為“友誼函數(shù)”,求f(0)的值并判斷函數(shù)的單調(diào)性;
          ②函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.
          分析:①賦值可考慮取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),可得f(0)≥f(0)+f(0),由已知f(0)≥0,可得f(0)=0,由0≤x1<x2≤1,則0<x2-x1<1,故有f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)≥f(x1),即得結(jié)論成立;
          ②要判斷函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù),只要檢驗(yàn)函數(shù)g(x)=2x-1在[0,1]上是否滿足(1)g(x)>0;(2)g(1)=1;(3)x1≥0,x2≥0,且x1+x2≤1,有g(shù)(x1+x2)≥g(x1)+g(x2)即可.
          解答:解:①取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),
          得f(0)≥f(0)+f(0),化簡(jiǎn)可得f(0)≤0
          又由f(0)≥0,得f(0)=0
          設(shè)0≤x1<x2≤1,則0<x2-x1<1,
          所以f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)≥f(x1
          故有f(x1)≤f(x2),故函數(shù)f(x)為定義在[0,1]上的增函數(shù);
          ②顯然g(x)=2x-1在[0,1]上滿足(1)g(x)>0;(2)g(1)=1;(3)若x1≥0,x2≥0,且x1+x2≤1,則有
          g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=(2x2-1)(2x1-1)≥0
          故g(x)=2x-1滿足條件(1)、(2)、(3),
          所以g(x)=2x-1為友誼函數(shù).
          點(diǎn)評(píng):采用賦值法是解決抽象函數(shù)的性質(zhì)應(yīng)用的常用方法,而函數(shù)的新定義往往轉(zhuǎn)化為一般函數(shù)性質(zhì)的研究,本題結(jié)合指數(shù)函數(shù)的性質(zhì)研究函數(shù)的函數(shù)的函數(shù)值域的應(yīng)用,指數(shù)函數(shù)的單調(diào)性的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足:
          ①對(duì)于任意的x∈[0,1],總有f(x)≥0;
          ②f(1)=1;
          ③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
          (1)求f(0)的值;
          (2)求f(x)的最大值;
          (3)若對(duì)于任意x∈[0,1],總有4f2(x)-4(2-a)f(x)+5-4a≥0成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
          ①對(duì)任意的x∈[0,1],總有f(x)≥0; 
          ②f(1)=1;
          ③若x1≥0,x2≥0且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立,并且稱f(x)為“友誼函數(shù)”,
          請(qǐng)解答下列各題:
          (1)若已知f(x)為“友誼函數(shù)”,求f(0)的值;
          (2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.
          (3)已知f(x)為“友誼函數(shù)”,且 0≤x1<x2≤1,求證:f(x1)≤f(x2).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足:
          ①對(duì)于任意的x∈[0,1],總有f(x)≥0;
          ②f(1)=1;
          ③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f (x1+x2)≥f (x1)+f (x2).
          (1)試求f(0)的值;
          (2)試求函數(shù)f(x)的最大值;
          (3)試證明:當(dāng)x∈(
          1
          2n
          1
          2n-1
          ]
          ,n∈N+時(shí),f(x)<2x.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義域?yàn)閇0,1]的函數(shù)同時(shí)滿足以下三個(gè)條件:①對(duì)任意x∈[0,1],總有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立.
          (1)求f(0)的值;
          (2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否同時(shí)適合①②③?并予以證明;
          (3)假定存在x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求證:f(x0)=x0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義域?yàn)閇0,1]的函數(shù)f (x)同時(shí)滿足:
          ①對(duì)于任意的x∈[0,1],總有f(x)≥0;
          ②f(1)=1;
          ③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
          (1)試求f(0)的值;
          (2)試求函數(shù)f (x)的最大值;
          (3)試證明:當(dāng)x∈(
          1
          4
          ,
          1
          2
          ]
          時(shí),f(x)<2x.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案