日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,P是拋物線C:y=x2上一點(diǎn),直線l過(guò)點(diǎn)P且與拋物線C交于另一點(diǎn)Q.若直線l與過(guò)點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程.

          【答案】分析:欲求PQ中點(diǎn)M的軌跡方程,需知P、Q的坐標(biāo).思路一,P、Q是直線l與拋物線C的交點(diǎn),故需求直線l的方程,再與拋物線C的方程聯(lián)立,利用韋達(dá)定理、中點(diǎn)坐標(biāo)公式可求得M的軌跡方程;思路二,設(shè)出P、Q的坐標(biāo),利用P、Q的坐標(biāo)滿足拋物線C的方程,代入拋物線C的方程相減得PQ的斜率,利用PQ的斜率就是l的斜率,可求得M的軌跡方程.
          解答:解:設(shè)P(x1,y1)、Q(x2,y2)、M(x,y),依題意知x1≠0,y1>0,y2>0.
          由y=x2,①
          得y′=x.
          ∴過(guò)點(diǎn)P的切線的斜率k=x1,∴直線l的斜率kl=-=-,
          直線l的方程為y-x12=-(x-x1).②
          方法一:聯(lián)立①②消去y,得x2+x-x12-2=0.
          ∵M(jìn)為PQ的中點(diǎn),
          ∴x==-,y=x12-(x-x1).消去x1,得y=x2++1(x≠0),
          ∴PQ中點(diǎn)M的軌跡方程為y=x2++1(x≠0).
          方法二:由y1=x12,y2=x22,x=,
          得y1-y2=x12-x22=(x1+x2)(x1-x2)=x(x1-x2),則x==kl=-,
          ∴x1=-
          將上式代入②并整理,得y=x2++1(x≠0),
          ∴PQ中點(diǎn)M的軌跡方程為y=x2++1(x≠0).
          點(diǎn)評(píng):本題考查拋物線的應(yīng)用,及軌跡方程的求法,關(guān)鍵是看清題中給出的條件,靈活運(yùn)用韋達(dá)定理,中點(diǎn)坐標(biāo)公式進(jìn)行求解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,P是拋物線C:y=
          12
          x2上一點(diǎn),直線l過(guò)點(diǎn)P且與拋物線C交于另一點(diǎn)Q.若直線l與過(guò)點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,P是拋物線C:y=
          1
          2
          x2上一點(diǎn),直線l過(guò)點(diǎn)P且與拋物線C交于另一點(diǎn)Q.
          (Ⅰ)若直線l與過(guò)點(diǎn)P的切線垂直,求線段PQ中點(diǎn)M的軌跡方程;
          (Ⅱ)若直線l不過(guò)原點(diǎn)且與x軸交于點(diǎn)S,與y軸交于點(diǎn)T,試求
          |ST|
          |SP|
          +
          |ST|
          |SQ|
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,P是拋物線C:y=
          12
          x2上一點(diǎn),直線l過(guò)點(diǎn)P并與拋物線C在點(diǎn)P的切線垂直,l與拋物線C相交于另一點(diǎn)Q.
          (Ⅰ)當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求直線l的方程;
          (Ⅱ)當(dāng)點(diǎn)P在拋物線C上移動(dòng)時(shí),求線段PQ中點(diǎn)M的軌跡方程,并求點(diǎn)M到x軸的最短距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,P是拋物線C:y=
          12
          x2上橫坐標(biāo)大于零的一點(diǎn),直線l過(guò)點(diǎn)P并與拋物線C在點(diǎn)P處的切線垂直,直線l與拋物線C相交于另一點(diǎn)Q.當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,P是拋物線C:x2=2y上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),直線l過(guò)點(diǎn)P且與拋物線交于另一點(diǎn)Q,已知P(x1,y1),Q(x2,y2).
          (1)若l經(jīng)過(guò)點(diǎn)F,求弦長(zhǎng)|PQ|的最小值;
          (2)設(shè)直線l:y=kx+b(k≠0,b≠0)與x軸交于點(diǎn)S,與y軸交于點(diǎn)T
          ①求證:
          |ST|
          |SP|
          +
          |ST|
          |SQ|
          =|b|(
          1
          y1
          +
          1
          y2
          )

          ②求
          |ST|
          |SP|
          +
          |ST|
          |SQ|
          的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案