(本題滿分14分)如圖,設(shè)拋物線(
)的準(zhǔn)線與
軸交于
,焦點(diǎn)為
,以
、
為焦點(diǎn),離心率
的橢圓
與拋物線
在
軸上方的一個(gè)交點(diǎn)為
.
(1)當(dāng)時(shí),求橢圓的方程;
(2)在(1)的條件下,直線經(jīng)過橢圓
的右焦點(diǎn)
,與拋物線
交于
、
,如果以線段
為直徑作圓,試判斷點(diǎn)
與圓的位置關(guān)系,并說明理由;
(3)是否存在實(shí)數(shù)
,使得
的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)
;若不存在,請說明理由.
,
【解析】解:∵的右焦點(diǎn)
∴橢圓的半焦距,又
,
∴橢圓的長半軸的長,短半軸的長
.
橢圓方程為.
(1)當(dāng)時(shí),故橢圓方程為
,………3分
(2)依題意設(shè)直線的方程為:
,
聯(lián)立 得點(diǎn)
的坐標(biāo)為
.
將代入
得
.
設(shè)、
,由韋達(dá)定理得
,
.
又,
.
∵,于是
的值可能小于零,等于零,大于零。
即點(diǎn)可在圓內(nèi),圓上或圓外.
……………8分
(3)假設(shè)存在滿足條件的實(shí)數(shù),
由解得:
.
∴,
,又
.
即的邊長分別是
、
、
.
時(shí),能使
的邊長是連續(xù)的自然數(shù)!14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過測量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),
(1)求證:;
(2)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF//平面AEB1;
(3)在棱CC1上是否存在點(diǎn)E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點(diǎn),求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)如圖,正方形、
的邊長都是1,平面
平面
,點(diǎn)
在
上移動(dòng),點(diǎn)
在
上移動(dòng),若
(
)
(I)求的長;
(II)為何值時(shí),
的長最小;
(III)當(dāng)的長最小時(shí),求面
與面
所成銳二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測 題型:解答題
(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點(diǎn)。
(1)求證:EF//平面ABC;
(2)求證:平面平面C1CBB1;
(3)求異面直線AB與EB1所成的角。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com