日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知等比數(shù)列的前n項和為,且當(dāng)時,2m的等差中項為實數(shù).

          1)求m的值及數(shù)列的通項公式;

          2)令,是否存在正整數(shù)k,使得對任意正整數(shù)n均成立?若存在,求出k的最大值;若不存在,說明理由.

          【答案】1,;(2)存在,4.

          【解析】

          1)根據(jù)等差中項的性質(zhì)列方程,求得的表達式.利用,結(jié)合是等比數(shù)列,求得的值及數(shù)列的通項公式.

          2)由(1)求得的表達式,將不等式左邊看成,利用差比較法判斷出的單調(diào)性,由此求得的最小值,進而求得的最大值.

          12m的等差中項, ,即,

          當(dāng)時,,

          當(dāng)時,,是等比數(shù)列,,則

          ,且數(shù)列的通項公式為.

          2存在正整數(shù)k,使不等式恒成立,k的最大值為4.

          數(shù)列單調(diào)遞增,,

          由不等式恒成立得:.

          故存在正整數(shù)k,使不等式恒成立,k的最大值為4.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          1)求的普通方程和的直角坐標(biāo)方程;

          2)直線軸的交點為,經(jīng)過點的直線與曲線交于兩點,若,求直線的傾斜角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,點在橢圓.

          (1)求橢圓的方程;

          (2)設(shè)直線與圓相切,與橢圓相交于兩點,求證:是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知離心率為的橢圓的左頂點為A,且橢圓E經(jīng)過與坐標(biāo)軸不垂直的直線l與橢圓E交于C,D兩點,且直線AC和直線AD的斜率之積為.

          I)求橢圓E的標(biāo)準(zhǔn)方程;

          )求證:直線l過定點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點分別為,過點且斜率為 的直線和以橢圓的右頂點為圓心,短半軸為半徑的圓相切.

          1)求橢圓的方程;

          (2)橢圓的左、右頂點分為A,B,過右焦點的直線l交橢圓于P,Q兩點,求四邊形APBQ面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】日照一中為了落實陽光運動一小時活動,計劃在一塊直角三角形ABC的空地上修建一個占地面積為S的矩形AMPN健身場地.如圖,點MAC上,點NAB上,且P點在斜邊BC上,已知∠ACB=60°|AC|=30米,|AM|=x米,x[10,20].

          (1)試用x表示S,并求S的取值范圍;

          (2)若在矩形AMPN以外(陰影部分)鋪上草坪.已知:矩形AMPN健身場地每平方米的造價為,草坪的每平方米的造價為(k為正常數(shù)).設(shè)總造價T關(guān)于S的函數(shù)為T=f(S),試問:如何選取|AM|的長,才能使總造價T最低.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為

          (1)求橢圓的方程;

          (2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于函數(shù),若存在正常數(shù),使得對任意的,都有成立,我們稱函數(shù)同比不減函數(shù)

          1)求證:對任意正常數(shù)都不是同比不減函數(shù);

          2)若函數(shù)同比不減函數(shù),求的取值范圍;

          3)是否存在正常數(shù),使得函數(shù)同比不減函數(shù),若存在,求的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓上兩個不同的點、關(guān)于直線對稱.

          1)若已知,為橢圓上動點,證明:

          2)求實數(shù)的取值范圍;

          3)求面積的最大值(為坐標(biāo)原點).

          查看答案和解析>>

          同步練習(xí)冊答案