【題目】已知城和城
相距
,現(xiàn)計劃以
為直徑的半圓上選擇一點
(不與點
,
重合)建造垃圾處理廠.垃圾處理廠對城市的影響度與所選地點到城市的距離有關(guān),對城
和城
的總影響度為對城
與城
的影響度之和.記點到
城
的距離為
,建在
處的垃圾處理廠對城
和城
的總影響度為
.統(tǒng)計調(diào)查表明:垃圾處理廠對城
的影響度與所選地點到城
的距離的平方成反比例關(guān)系,比例系數(shù)為4;對城
的影響度與所選地點到城
的距離的平方成反比例關(guān)系,比例系數(shù)為
.當垃圾處理廠建在
的中點時,對城
和城
的總影響度為0.065.
(1)將表示成
的函數(shù).
(2)討論(1)中函數(shù)的單調(diào)性,并判斷在上是否存在一點,使建在此處的垃圾處理廠對城
和城
的總影響度最。咳舸嬖,求出該點到城
的距離;若不存在,請說明理由.
【答案】(1).
(2)點到城
的距離為
時,函數(shù)
有最小值.
【解析】(1)由點是在以
為直徑的半圓上,則易知
,由勾股定理可得,
,再根據(jù)題意建立函數(shù)模型,求出系數(shù)
,從而問題可得解;(2)由(1)可得,利用函數(shù)導(dǎo)數(shù)來研究該的單調(diào)性,并求出其最小值,從而問題可得解.
試題解析:(1)由題意知,
,
,
則,
所以
.
因為當時,
,
代入表達式解得,
所以
.
(2)因為,
所以
.
令,得
,
所以,即
.
當時,
,所以函數(shù)
為減函數(shù);
當時,
,所以函數(shù)
為增函數(shù).
所以當,即點
到城
的距離為
時,函數(shù)
有最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調(diào)查活動(一
人答一份).現(xiàn)從回收的年齡在20~60歲的問卷中隨機抽取了100份,統(tǒng)計結(jié)果如下面的圖表所示.
年齡 分組 | 抽取份數(shù) | 答對全卷 的人數(shù) | 答對全卷的人數(shù) 占本組的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | 27 | 0.9 | |
[40,50) | 10 | 4 | |
[50,60] | 20 | 0.1 |
(1)分別求出,
,
,
的值;
(2)從年齡在答對全卷的人中隨機抽取2人授予“環(huán)保之星”,求年齡在
的人中至少有1人被授予“環(huán)保之星”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從5名男生和4名女生中選出4人去參加座談會,問:
(1)如果4人中男生和女生各選2人,有多少種選法?
(2)如果男生中的甲與女生中的乙至少要有1人在內(nèi),有多少種選法?
(3)如果4人中必須既有男生又有女生,有多少種選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若,曲線
在
處的切線過點
,求
的值;
②若,求
在區(qū)間
上的最大值.
(2)設(shè)在
,
兩處取得極值,求證:
,
不同時成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列4個命題:
①“若成等比數(shù)列,則
”的逆命題;
②“如果,則
”的否命題;
③在中,“若
”則“
”的逆否命題;
④當時,若
對
恒成立,則
的取值范圍是
.
其中真命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市要建成宜商、宜居的國際化新城,該城市的東城區(qū)、西城區(qū)分別引進8個廠家,現(xiàn)對兩個區(qū)域的16個廠家進行評估,綜合得分情況如莖葉圖所示.
(1)根據(jù)莖葉圖判斷哪個區(qū)域廠家的平均分較高;
(2)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個區(qū)域各選一個優(yōu)秀廠家,求得分差距不超過5分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有個黃色、
個白色的乒乓球,做不放回抽樣,每次任取
個球,取
次,則關(guān)于事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率說法正確的是( )
A. 事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率都等于
B. 事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率都等于
C. 事件“直到第二次才取到黃色球”的概率等于,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于
D. 事件“直到第二次才取到黃色球”的概率等于,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點在
軸上,且橢圓
的焦距為2.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點的直線
與橢圓
交于兩點
,過
作
軸且與橢圓
交于另一點
,
為橢圓
的右焦點,求證:三點
在同一條直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com