日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)的定義域為, 且奇函數(shù).當(dāng)時, =--1,那么函數(shù),當(dāng)時, 的遞減區(qū)間是 (     )

          A.  B.  C.    D.

           

          【答案】

          C

          【解析】

          試題分析:函數(shù)是奇函數(shù),說明的圖象關(guān)于原點對稱,而的圖象是由函數(shù)的圖象向左平移一個單位得到的,故反過來,把的圖象向右平移1個單位就得到函數(shù)的圖象,因此函數(shù)的圖象關(guān)于點 對稱,那么函數(shù)在關(guān)于點對稱的區(qū)間上單調(diào)性相同(仿奇函數(shù)性質(zhì)),而當(dāng)時, =--1,其遞減區(qū)間為 ,它關(guān)于點對稱區(qū)間為,∴選C.

          考點:奇函數(shù)的性質(zhì)及圖象的平移.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)的定義域為(0,+∞),且單調(diào)遞增,滿足f(4)=1,f(xy)=f(x)+f(y).
          (Ⅰ)證明:f(1)=0;
          (Ⅱ)若f(x)+f(x-3)≤1,求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)的定義域為R,對任意的x1,x2都滿足f(x1+x2)=f(x1)+f(x2),當(dāng)x>0時,f(x)>0.
          (I)試判斷并證明f(x)的奇偶性;
          (II)試判斷并證明f(x)的單調(diào)性;
          (III)若f(cos2θ-3)+f(4m-2mcosθ)>0對所有的θ∈[0,
          π2
          ]
          均成立,求實數(shù)m 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省杭州市七校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)的定義域為,

          (1)求;

          (2)若,且的真子集,求實數(shù)的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆遼寧朝陽高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

          已知函數(shù)的定義域為,部分對應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。

          0

          下列關(guān)于函數(shù)的命題:

          ①函數(shù)上是減函數(shù);②如果當(dāng)時,最大值是,那么的最大值為;③函數(shù)個零點,則;④已知的一個單調(diào)遞減區(qū)間,則的最大值為

          其中真命題的個數(shù)是(           )

          A、4個    B、3個  C、2個  D、1個

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省?谑懈呷呖颊{(diào)研考試?yán)砜茢?shù)學(xué) 題型:選擇題

          已知函數(shù)的定義域為,且,的導(dǎo)函數(shù),函數(shù)的圖象如圖所示.若正數(shù),滿足,則的取值范圍是

              A.    B.  C.    D.

           

          查看答案和解析>>

          同步練習(xí)冊答案