日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn)P是圓x2+y2=16上的一個(gè)動(dòng)點(diǎn),點(diǎn)A(12,0)是x軸上的一定點(diǎn),當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PA的中點(diǎn)M的軌跡是什么?并判定此軌跡與圓x2+y2=16的位置關(guān)系.
          設(shè)點(diǎn)M的坐標(biāo)為(x,y),點(diǎn)P的坐標(biāo)為(x0,y0),
          由于點(diǎn)A(12,0),且M是線段PA的中點(diǎn),所以,
          x=
          x0+12
          2
          y=
          y0+0
          2
          ,得
          x0=2x-12
          y0=2y

          因?yàn)辄c(diǎn)P是圓x2+y2=16上的一個(gè)動(dòng)點(diǎn),所以P的坐標(biāo)滿足方程x02+y02=16
          代入整理得:(x-6)2+y2=4.
          所以點(diǎn)M的軌跡為以(6,0)為圓心,2為半徑的圓,
          因?yàn)閮蓤A的圓心距為
          (6-0)2+(0-0)2
          =6
          ,兩圓的半徑之和為2+4=6,
          所以兩圓外切.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知點(diǎn)P是圓x2+y2=1上一動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
          QM
          QP
          (λ為非零常數(shù))的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)若存在過(guò)點(diǎn)N(
          1
          2
          ,0)
          的直線l與曲線C相交于A、B兩點(diǎn),且
          OA
          OB
          =0(O為坐標(biāo)原點(diǎn)),求λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
          QM
          =2
          QP
          的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知點(diǎn)P是圓x2+y2=1上任意一點(diǎn),過(guò)點(diǎn)P作y軸的垂線,垂足為Q,點(diǎn)R滿足
          RQ
          =
          3
          PQ
          ,記點(diǎn)R的軌跡為曲線C.
          (Ⅰ)求曲線C的方程;
          (Ⅱ)設(shè)A(0,1),點(diǎn)M、N在曲線C上,且直線AM與直線AN的斜率之積為
          2
          3
          ,求△AMN的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件數(shù)學(xué)公式的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷3(文科)(解析版) 題型:解答題

          已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案