如圖已知拋物線的焦點坐標為
,過
的直線交拋物線
于
兩點,直線
分別與直線
:
相交于
兩點.
(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.
(1);(2)證明過程詳見解析.
解析試題分析:本題主要考查拋物線、直線的方程,以及直線與拋物線的位置關(guān)系,突出解析幾何的基本思想和方法的考查:如數(shù)形結(jié)合思想、坐標化方法等.第一問,利用拋物線的標準方程,利用焦點坐標求出,代入即可;第二問,討論直線
垂直和不垂直
軸2種情況,當直線
垂直于
軸時,2個三角形相似,面積比為定值,當直線
不垂直于
軸時,設(shè)出直線
的方程,設(shè)出
四個點坐標,利用直線
與拋物線相交列出方程組,消參得到方程,利用兩根之積得
為定值,而面積比值與
有關(guān),所以也為定值.
試題解析:(1)由焦點坐標為 可知
所以,所以拋物線
的方程為
5分
(2)當直線垂直于軸時,
與
相似,
所以, 7分
當直線與軸不垂直時,設(shè)直線AB方程為
,
設(shè),
,
,
,
解整理得
, 9分
所以, 10分
,
綜上 12分
考點:1.拋物線的標準方程;2.直線方程;3.根與系數(shù)關(guān)系;4.三角形面積公式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,離心率為
,長軸長為
,直線
交橢圓于不同的兩點
.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經(jīng)過橢圓上的點
,求證:直線
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
(
)的右焦點
,右頂點
,右準線
且
.
(1)求橢圓的標準方程;
(2)動直線:
與橢圓
有且只有一個交點
,且與右準線相交于點
,試探究在平面直角坐標系內(nèi)是否存在點
,使得以
為直徑的圓恒過定點
?若存在,求出點
坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在軸上,且過點
.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線
交拋物線于不同的兩點
若拋物線上一點
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖已知橢圓的中點在原點,焦點在x軸上,長軸是短軸的2倍且過點,平行于
的直線
在y軸的截距為
,且交橢圓與
兩點,
(1)求橢圓的方程;(2)求的取值范圍;(3)求證:直線
、
與x軸圍成一個等腰三角形,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與雙曲線
有公共焦點
,點
是曲線
在第一象限的交點,且
.
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點
為圓心的圓
與直線
相切,圓
:
.過點
作互相垂直且分別與圓
、圓
相交的直線
和
,設(shè)
被圓
截得的弦長為
,
被圓
截得的弦長為
,問:
是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動直線:
與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且
,
,四邊形
面積S的求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系中,動點
到兩點
,
的距離之和等于4,設(shè)點
的軌跡為曲線C,直線過點
且與曲線C交于A,B兩點.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系中,
、
分別是橢圓
的頂點,過坐標原點的直線交橢圓于
、
兩點,其中
在第一象限.過
作
軸的垂線,垂足為
.連接
,并延長交橢圓于點
.設(shè)直線
的斜率為
.
(Ⅰ)當直線平分線段
時,求
的值;
(Ⅱ)當時,求點
到直線
的距離;
(Ⅲ)對任意,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com