日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          17、例1.a、b、c≥0,求證a3+b3+c3≥3abc.
          分析:先將不等式的左側分解為三個立方和的形式,根據立方和公式展開,第一次使用基本不等式x2+y2≥2xy,再將三個式子相加,合理分組后,第二次使用基本不等式x2+y2≥2xy,化簡整理后,即可得到要證的結論.
          解答:證明:∵a3+b3=(a+b)(a2+b2-ab)≥(a+b)ab (當且僅當a=b時“=”成立)
          b3+c3=(b+c)(b2+c2-bc)≥(b+c)bc (當且僅當b=c時“=”成立)
          c3+a3=(a+c)(c2+a2-ca)≥(c+a)ca (當且僅當c=a時“=”成立)
          ∴2(a3+b3+c3)≥a2b+ab2+b2c+bc2+c2a+ca2
          =b(a2+c2)+a(b2+c2)+c(a2+b2
          ≥2abc+2abc+2abc=6abc.(當且僅當a=b=c時“=”成立)
          ∴a3+b3+c3≥3abc.
          點評:本題兩次使用了基本不等式x2+y2≥2xy(當且僅當x=y時“=”成立),要特別注意等號成立的條件.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          例2:已知f(x)=ax2+bx+c的圖象過點(-1,0),是否存在常數a、b、c,使不等式x≤f(x)≤
          x2+12
          對一切實數x都成立?

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          21、例4.已知f(x)=ax2+bx+c,g(x)=ax+b(a、b、c∈R),當x∈[-1,1]時,|f(x)|≤1
          (1)證明:|c|≤1.
          (2)x∈[-1,1]時,證明|g(x)|≤2.
          (3)設a>0,當-1≤x≤1時,g(x)max=2,求f(x).

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          例1.a、b、c≥0,求證a3+b3+c3≥3abc.

          查看答案和解析>>

          科目:高中數學 來源:2011年高三數學復習(第5章 不等式):5.2 不等式證明(解析版) 題型:解答題

          例1.a、b、c≥0,求證a3+b3+c3≥3abc.

          查看答案和解析>>

          同步練習冊答案