日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點為F,⊙M的圓心在x軸的正半軸上,且與y軸相切,過原點O作傾斜角為的直線n,交l于點A,交⊙M于另一點B,且AO=OB=2.
          (1)求⊙M和拋物線C的方程;
          (2)過l上的動點Q向⊙M作切線,切點為S,T,求證:直線ST恒過一個定點,并求該定點的坐標(biāo).

          【答案】分析:(1)根據(jù)=OA•cos60°可求出p的值,從而求出拋物線方程,求出圓心和半徑可求出⊙M的方程;
          (2)以點Q為圓心,QS為半徑作⊙Q,則線段ST即為⊙Q與⊙M的公共弦,求出⊙Q的方程,可得ST的方程,從而可求定點坐標(biāo).
          解答:(1)解:因為=OA•cos60°=2×=1,即p=2,所以拋物線C的方程為y2=4x
          設(shè)⊙M的半徑為r,則r=,所以⊙M的方程為(x-2)2+y2=4;
          (2)證明:以點Q為圓心,QS為半徑作⊙Q,則線段ST即為⊙Q與⊙M的公共弦
          設(shè)點Q(-1,t),則QS2=QM2-4=t2+5,
          所以⊙Q的方程為(x+1)2+(y-t)2=t2+5
          從而直線ST的方程為3x-ty-2=0(*)
          因為x=,y=0一定是方程(*)的解,所以直線ST恒過一個定點,且該定點坐標(biāo)為(,0).
          點評:本題主要考查了圓的方程和拋物線方程,考查直線恒過定點問題,確定ST是⊙Q與⊙M的公共弦是關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點. A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M(O為坐標(biāo)原點).
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)過M作MN⊥FA,垂足為N,求點N的坐標(biāo);
          (Ⅲ)以M為圓心,4為半徑作圓M,點P(m,0)是x軸上的一個動點,試討論直線AP與圓M的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點,A為拋物線C上的動點,過A作拋物線準(zhǔn)線l的垂線,垂足為Q.
          (1)若點P(0,4)與點F的連線恰好過點A,且∠PQF=90°,求拋物線方程;
          (2)設(shè)點M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點到焦點的距離為5.
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
          16(1-kb)k2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=4x,點M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點,O為坐標(biāo)原點.
          (I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
          (II)問是否存在定點M,不論直線l繞點M如何轉(zhuǎn)動,使得
          1
          |AM|2
          +
          1
          |BM|2
          恒為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C:y2=8x與點M(-2,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若
          MA
          MB
          =0,則k=( 。

          查看答案和解析>>

          同步練習(xí)冊答案