日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),x∈R,F(x)=
          f(x)(x>0)
          -f(x)(x<0)

          (1)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的表達(dá)式;
          (2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
          (3)設(shè)m>0,n<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零?
          分析:(1)f(-1)=0?a-b+1=0,又值域?yàn)閇0,+∞)即最小值為0?4a-b2=0,求出f(x)的表達(dá)式再求F(x)的表達(dá)式即可;
          (2)把g(x)的對(duì)稱軸求出和區(qū)間端點(diǎn)值進(jìn)行分類討論即可.
          (3)f(x)為偶函數(shù)?對(duì)稱軸為0?b=0,把F(m)+F(n)轉(zhuǎn)化為f(m)-f(n)=a(m2-n2)再利用m>0,n<0,m+n>0,a>0來判斷即可.
          解答:解:(1)∵f(-1)=0,
          ∴a-b+1=0①(1分)
          又函數(shù)f(x)的值域?yàn)閇0,+∞),所以a≠0
          且由y=a(x+
          b
          2a
          )2+
          4a-b2
          4a
          4a-b2
          4a
          =0
          即4a-b2=0②
          由①②得a=1,b=2(3分)
          ∴f(x)=x2+2x+1=(x+1)2
          F(x)=
          (x+1)2(x>0)
          -(x+1)2(x<0)
          (5分)
          (2)由(1)有g(shù)(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=(x+
          2-k
          2
          )2+1-
          (2-k)2
          4
          ,(7分)
          當(dāng)
          k-2
          2
          ≥2
          k-2
          2
          ≤-2
          時(shí),
          即k≥6或k≤-2時(shí),g(x)是具有單調(diào)性.(9分)
          (3)∵f(x)是偶函數(shù)
          ∴f(x)=ax2+1,∴F(x)=
          ax2+1(x>0)
          -ax2-1(x<0)
          ,(11分)
          ∵m>0,n<0,設(shè)m>n,則n<0.又m+n>0,m>-n>0,
          ∴|m|>|-n|(13分)
          ∴F(m)+F(n)=f(m)-f(n)=(am2+1)-an2-1=a(m2-n2)>0,
          ∴F(m)+F(n)能大于零.(16分)
          點(diǎn)評(píng):本題是對(duì)二次函數(shù)性質(zhì)的綜合考查.其中(1)考查了二次函數(shù)解析式的求法.二次函數(shù)解析式的確定,應(yīng)視具體問題,靈活的選用其形式,再根據(jù)題設(shè)條件列方程組,即運(yùn)用待定系數(shù)法來求解.在具體問題中,常常會(huì)與圖象的平移,對(duì)稱,函數(shù)的周期性,奇偶性等知識(shí)有機(jī)的結(jié)合在一起.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案