日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】現(xiàn)有4名同學(xué)去參加校學(xué)生會活動,共有甲、乙兩類活動可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪類活動,擲出點數(shù)為1或2的人去參加甲類活動,擲出點數(shù)大于2的人去參加乙類活動.
          (1)求這4個人中恰有2人去參加甲類活動的概率;
          (2)用X,Y分別表示這4個人中去參加甲、乙兩類活動的人數(shù).記ξ=|X﹣Y|,求隨機變量ξ的分布列與數(shù)學(xué)期望E(ξ).

          【答案】
          (1)解:依題意,這4個人中,每個人去參加甲游戲的概率為 ,去參加乙游戲的人數(shù)的概率為

          設(shè)“這4個人中恰有i人去參加甲游戲”為事件Ai(i=0,1,2,3,4),故P(Ai)= i4i

          ∴這4個人中恰有2人去參加甲游戲的概率為P(A2)=


          (2)解:ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,

          故P(ξ=0)=P(A2)=

          P(ξ=2)=P(A1)+P(A3)= ,

          P(ξ=4)=P(A0)+P(A4)= ,

          ∴ξ的分布列是:

          ξ

          0

          2

          4

          P

          數(shù)學(xué)期望Eξ=0× +2× +4× =


          【解析】(1)依題意,這4個人中,每個人去參加甲游戲的概率為 ,去參加乙游戲的人數(shù)的概率為 .設(shè)“這4個人中恰有i人去參加甲游戲”為事件Ai(i=0,1,2,3,4),故P(Ai)= i4i . 由此能求出這4個人中恰有2人去參加甲游戲的概率.(2)ξ的所有可能取值為0,2,4,由于A1與A3互斥,A0與A4互斥,求出相應(yīng)的概率,可得ξ的分布列與數(shù)學(xué)期望.
          【考點精析】本題主要考查了離散型隨機變量及其分布列的相關(guān)知識點,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 =(2cosx,sinx), =(cosx,2 cosx),函數(shù)f(x)= ﹣1.
          (Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
          (Ⅱ)在銳角△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,tanB= ,對任意滿足條件的A,求f(A)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在棱長為a的正方體ABCD﹣A1B2C3D4中,點E,F(xiàn)分別在棱AD,BC上,且AE=BF= a.過EF的平面繞EF旋轉(zhuǎn),與DD1、CC1的延長線分別交于G,H點,與A1D1、B1C1分別交于E1 , F1點.當異面直線FF1與DD1所成的角的正切值為 時,|GF1|=(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
          (Ⅰ)證明:AB⊥A1C;
          (Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正三棱錐P﹣ABC的外接球的球心O滿足 =0,則二面角A﹣PB﹣C的正弦值為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】袋中裝有大小相同的四個球,四個球上分別標有數(shù)字“2”,“3”,“4”,“6”,現(xiàn)從中隨機選取三個球,則所選的三個球上的數(shù)字能構(gòu)成等差數(shù)列的概率是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
          (1)求某戶居民用電費用y(單位:元)關(guān)于月用電量x(單位:度)的函數(shù)解析式;
          (2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求a,b的值;
          (3)在滿足(2)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點值代替,記Y為該居民用戶1月份的用電費用,求Y的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖中的程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的”更相減損術(shù)“.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0時,則輸出的i=(
          A.3
          B.4
          C.5
          D.6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是(
          A.若命題p:?x0∈R,x02﹣x0+1<0,則¬p:?x?R,x2﹣x+1≥0
          B.已知相關(guān)變量(x,y)滿足回歸方程 =2﹣4x,若變量x增加一個單位,則y平均增加4個單位
          C.命題“若圓C:(x﹣m+1)2+(y﹣m)2=1與兩坐標軸都有公共點,則實數(shù)m∈[0,1]為真命題
          D.已知隨機變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4﹣a)=0.68

          查看答案和解析>>

          同步練習(xí)冊答案