日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 一走廊拐角下的橫截面如圖所示,已知內壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
          (1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內壁圓弧相切于點P.設∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
          (2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

          【答案】分析:(1)如圖,設圓弧FG所在的圓的圓心為Q,過Q點作CD垂線,垂足為點T,且交MN或其延長線與于S,并連接PQ,再過N點作TQ的垂線,垂足為W.在Rt△NWS中用NW和∠SNW表示出NS,在Rt△QPS中用PQ和∠PQS表示出QS,然后分別看S在線段TG上和在線段GT的延長線上分別表示出TS=QT-QS,然后在Rt△STM中表示出MS,利用MN=NS+MS求得MN的表達式和f(θ)的表達式.
          (2)設出sinθ+cosθ=t,則sinθcosθ可用t表示出,然后可得f(θ)關于t的表達式,對函數(shù)進行求導,根據(jù)t的范圍判斷出導函數(shù)小于0推斷出函數(shù)為減函數(shù).進而根據(jù)t的范圍求得函數(shù)的最小值.
          解答:解:(1)如圖,設圓弧FG所在的圓的圓心為Q,過Q點作CD垂線,垂足為點T,且交MN或其延長線與于S,并連接PQ,再過N點作TQ的垂線,垂足為W.
          在Rt△NWS中,因為NW=2,∠SNW=θ,
          所以
          因為MN與圓弧FG切于點P,所以PQ⊥MN,
          在Rt△QPS,因為PQ=1,∠PQS=θ,
          所以,,
          ①若M在線段TD上,即S在線段TG上,則TS=QT-QS,
          在Rt△STM中,,
          因此MN=NS+MS=
          ②若M在線段CT上,即若S在線段GT的延長線上,則TS=QS-QT,
          在Rt△STM中,,
          因此MN=NS-MS==
          f(θ)=MN===
          (2)設,則
          因此.因為,又,所以g′(t)<0恒成立,
          因此函數(shù)是減函數(shù),所以,

          答:一根水平放置的木棒若能通過該走廊拐角處,則其長度的最大值為
          點評:本題主要考查了解三角形的實際應用.考查了學生分析問題和解決問題的能力,基本的運算能力.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)一走廊拐角下的橫截面如圖所示,已知內壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
          (1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內壁圓弧相切于點P.設∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
          (2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本題滿分16分)

          一走廊拐角下的橫截面如圖所示,已知內壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.

          若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內壁圓弧相切于點P。設,試用表示木棒MN和長度。

          若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值。

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013年高考數(shù)學復習卷E(四)(解析版) 題型:解答題

          一走廊拐角下的橫截面如圖所示,已知內壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
          (1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內壁圓弧相切于點P.設∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
          (2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年福建省高考數(shù)學模擬試卷(理科)(解析版) 題型:解答題

          一走廊拐角下的橫截面如圖所示,已知內壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
          (1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內壁圓弧相切于點P.設∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
          (2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年江蘇省徐州市高考數(shù)學二模試卷(解析版) 題型:解答題

          一走廊拐角下的橫截面如圖所示,已知內壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點,EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.
          (1)若水平放置的木棒MN的兩個端點M、N分別在外壁CD和AB上,且木棒與內壁圓弧相切于點P.設∠CMN=θ(rad),試用θ表示木棒MN和長度f(θ).
          (2)若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值.

          查看答案和解析>>

          同步練習冊答案