日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1),P是動點(diǎn),且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA.

          (1)求點(diǎn)P的軌跡C的方程;
          (2)若Q是軌跡C上異于點(diǎn)P的一個點(diǎn),且=λ,直線OP與QA交于點(diǎn)M,問:是否存在點(diǎn)P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
          (1)y=x2(x≠0且x≠-1)(2)(1,1)
          (1)設(shè)點(diǎn)P(x,y)為所求軌跡上的任意一點(diǎn),則由kOP+kOA=kPA,
          整理得軌跡C的方程為y=x2(x≠0且x≠-1).

          (2)設(shè)P(x1,),Q(x2,,M(x0,y0),
          =λ可知直線PQ∥OA,則kPQ=kOA,故,即x2+x1=-1,
          由O、M、P三點(diǎn)共線可知,=(x0,y0)與=(x1)共線,
          ∴x0-x1y0=0,由(1)知x1≠0,故y0=x0x1,
          同理,由=(x0+1,y0-1)與=(x2+1,-1)共線可知(x0+1)(-1)-(x2+1)(y0-1)=0,即(x2+1)[(x0+1)·(x2-1)-(y0-1)]=0,
          由(1)知x2≠-1,故(x0+1)(x2-1)-(y0-1)=0,
          將y0=x0x1,x2=-1-x1代入上式得(x0+1)(-2-x1)-(x0x1-1)=0,
          整理得-2x0(x1+1)=x1+1,由x1≠-1得x0=-,由S△PQA=2S△PAM,得到QA=2AM,
          ∵PQ∥OA,∴OP=2OM,∴=2,∴x1=1,∴P的坐標(biāo)為(1,1)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線關(guān)于軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)、均在拋物線上.

          (1)寫出該拋物線的方程及其準(zhǔn)線方程;
          (2)當(dāng)的斜率存在且傾斜角互補(bǔ)時,求的值及直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知,直線為平面上的動點(diǎn),過點(diǎn)的垂線,垂足為點(diǎn),且
          (1)求動點(diǎn)的軌跡曲線的方程;
          (2)設(shè)動直線與曲線相切于點(diǎn),且與直線相交于點(diǎn),試探究:在坐標(biāo)平面內(nèi)是否存在一個定點(diǎn),使得以為直徑的圓恒過此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若點(diǎn)P到直線y=-2的距離比它到點(diǎn)A(0,1)的距離大1,則點(diǎn)P的軌跡為(  )
          A.圓B.橢圓C.雙曲線D.拋物線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          過拋物線的焦點(diǎn)作直線l交拋物線于A,B兩點(diǎn),分別過A,B作拋物線的切線,則的交點(diǎn)P的軌跡方程是(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          在平面直角坐標(biāo)系中,已知三點(diǎn),直線AC的斜率與傾斜角為鈍角的直線AB的斜率之和為,而直線AB恰好經(jīng)過拋物線)的焦點(diǎn)F并且與拋物線交于P、Q兩點(diǎn)(P在Y軸左側(cè)).則(    )
          A.9B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,過拋物線C:y2=4x上一點(diǎn)P(1,-2)作傾斜角互補(bǔ)的兩條直線,分別與拋物線交于點(diǎn)A(x,y1),B(x2,y2).

          (1)求y1+y2的值;
          (2)若y1≥0,y2≥0,求△PAB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知拋物線y2=2px,以過焦點(diǎn)的弦為直徑的圓與拋物線準(zhǔn)線的位置關(guān)系是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          O為坐標(biāo)原點(diǎn),F為拋物線C:y2=4x的焦點(diǎn),P為C上一點(diǎn),若|PF|=4,則△POF的面積為(  )
          A.2 B.2C.2D.4

          查看答案和解析>>

          同步練習(xí)冊答案