日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知向量
          a
          =(sinθ,1),
          b
          =(1,cosθ),θ∈(-
          π
          2
          ,
          π
          2
          )

          (1)若
          a
          b
          ,求θ的值;
          (2)若已知sinθ+cosθ=
          2
          sin(θ+
          π
          4
          )
          ,利用此結(jié)論求|
          a
          +
          b
          |的最大值.
          分析:(1)根據(jù)題意,由
          a
          b
          ,可得
          a
          b
          =0
          ,由數(shù)量積公式可得sinθ+cosθ=0,即tanθ=-1,結(jié)合θ的范圍,即可得答案;
          (2)由向量模的計算方法,有|
          a
          +
          b
          |=
          2
          2
          sin(θ+
          π
          4
          )+3
          ,由正弦函數(shù)的性質(zhì),分析可得當(dāng)sin(θ+
          π
          4
          )=1
          時,|
          a
          +
          b
          |有最大值,即可得答案.
          解答:解:(1)由
          a
          b
          ,得
          a
          b
          =0
          ,
          則有sinθ+cosθ=0,即tanθ=-1,
          又由θ∈(-
          π
          2
          ,
          π
          2

          因此θ=-
          π
          4

          (2)|a+b|=
          (sinθ+1)2+(cosθ+1)2
          =
          2(sinθ+cosθ)+3
          =
          2
          2
          sin(θ+
          π
          4
          )+3

          當(dāng)sin(θ+
          π
          4
          )=1
          時,|
          a
          +
          b
          |有最大值,
          此時θ=
          π
          4
          ,|
          a
          +
          b
          |的最大值為
          2
          2
          +3
          =
          2
          +1
          點(diǎn)評:本題考查向量數(shù)量積的應(yīng)用,要掌握通過數(shù)量積來判斷向量垂直,計算向量的模的方法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知向量
          a
          =(sinθ,
          3
          )
          b
          =(1,cosθ)
          θ∈(-
          π
          2
          ,
          π
          2
          )

          (1)若
          a
          b
          ,求θ;
          (2)求|
          a
          +
          b
          |
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知向量
          a
          =(sin(x-
          π
          4
          ),-1),
          b
          =(
          2
          ,2)
          f(x)=
          a
          b
          +2

          (1)求f(x)的表達(dá)式.
          (2)用“五點(diǎn)作圖法”畫出函數(shù)f(x)在一個周期上的圖象.
          (3)寫出f(x)在[-π,π]上的單調(diào)遞減區(qū)間.
          (4)設(shè)關(guān)于x的方程f(x)=m在x∈[-π,π]上的根為x1,x2m∈(1,
          2
          )
          ,求x1+x2的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知向量
          a
          =(sinθ,-2),
          b
          =(1,cosθ)
          ,且
          a
          b
          ,則sin2θ+cos2θ的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知向量
          a
          =(sin(x-
          π
          4
          ),-1)
          ,
          b
          =(2,2)
          f(x)=
          a
          b
          +2

          ①用“五點(diǎn)法”作出函數(shù)y=f(x)在長度為一個周期的閉區(qū)間的圖象.
          ②求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
          ③求函數(shù)f(x)的最大值,并求出取得最大值時自變量x的取值集合
          ④函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?
          ⑤當(dāng)x∈[0,π],求函數(shù)y=2sin(x-
          π
          4
          )
          的值域
          解:(1)列表
          (2)作圖
          精英家教網(wǎng)

          查看答案和解析>>