日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).已知曲線C上任意一點(diǎn)P(x,y)(其中x≥0)到定點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離大1,直線l與曲線C相交于不同的A,B兩點(diǎn).
          (1)求曲線C的軌跡方程;
          (2)若直線l經(jīng)過點(diǎn)F(1,0),求數(shù)學(xué)公式的值;
          (3)若數(shù)學(xué)公式,證明直線l必過一定點(diǎn),并求出該定點(diǎn).

          解:(1)依題意知,動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離等于P到直線x=-1的距離,
          ∴曲線C是以原點(diǎn)為頂點(diǎn),F(xiàn)(1,0)為焦點(diǎn)的拋物線
          ,∴p=2
          ∴曲線C方程是y2=4x
          (2)當(dāng)l平行于y軸時(shí),其方程為x=1,由解得A(1,2)、B(1,-2)
          此時(shí)
          當(dāng)l不平行于y軸時(shí),設(shè)其斜率為k,則由得k2x2-(2k2+4)x+k2=0
          設(shè)A(x1,y1),B(x2,y2),則有x1x2=1,
          ==
          (3)設(shè)l:x=ty+b代入拋物線y2=4x消去x,得y2-4ty-4b=0
          設(shè)A(x1,y1),B(x2,y2),則y1+y2=4t,y1y2=-4b.

          =-4bt2+4bt2+b2-4b=b2-4b.
          令b2-4b=-4,∴b2-4b+4=0,∴b=2,
          ∴直線l過定點(diǎn)(2,0).
          分析:(1)依題意知,動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離等于P到直線x=-1的距離,曲線C是以原點(diǎn)為頂點(diǎn),F(xiàn)(1,0)為焦點(diǎn)的拋物線,由此可求曲線C方程;
          (2)當(dāng)l平行于y軸時(shí),其方程為x=1,此時(shí);當(dāng)l不平行于y軸時(shí),設(shè)l的方程與拋物線方程聯(lián)立,利用韋達(dá)定理及向量的數(shù)量積,可得的值;
          (3)設(shè)l:x=ty+b代入拋物線y2=4x消去x,得y2-4ty-4b=0,利用韋達(dá)定理及,可得b的值,從而可得結(jié)論.
          點(diǎn)評(píng):本題考查拋物線的定義,考查向量的數(shù)量積,考查直線與拋物線的位置關(guān)系,解題的關(guān)鍵是確定拋物線的方程,聯(lián)立方程,利用韋達(dá)定理求解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
          π3
          )=1
          ,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
          π
          2
          2
          )
          ,且|
          AC
          |=|
          BC
          |

          (1)求角θ的值;
          (2)設(shè)α>0,0<β<
          π
          2
          ,且α+β=
          2
          3
          θ
          ,求y=2-sin2α-cos2β的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
           
          (寫出所有正確命題的編號(hào)).
          ①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
          ②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
          ③直線l經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個(gè)不同的整點(diǎn)
          ④直線y=kx+b經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
          ⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案