日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ4acosθ,直線l與曲線C交于不同的兩點MN

          1)求實數(shù)a的取值范圍;

          2)已知a0,設(shè)點P(﹣1,﹣2),若|PM||MN|,|PN|成等比數(shù)列,求a的值.

          【答案】1)(﹣,﹣1)∪(0+∞).(2a

          【解析】

          1)轉(zhuǎn)化出直線l的普通方程:yx1,曲線C的普通方程:y24ax,聯(lián)立方程組令即可得解;

          2)設(shè)MN分別對應(yīng)t1,t2,轉(zhuǎn)化條件得,

          ,解出方程即可得解.

          1)∵直線l的參數(shù)方程為t為參數(shù)),

          ∴直線l的普通方程為:yx1,

          ∵曲線C的極坐標(biāo)方程為ρsin2θ4acosθ,

          ∴曲線C的普通方程為:y24ax

          聯(lián)立,得y24ay+1),即y24ay4a0,

          ∵直線l與曲線C交于不同的兩點M,N

          ∴由題知=(﹣4a24(﹣4a)=16a2+16a0,

          解得a<-1a0,

          ∴實數(shù)a的取值范圍是(﹣,﹣1)∪(0+∞).

          2)設(shè)M,N分別對應(yīng)t1,t2,

          則有()24a×(t-1),∴,

          由題知|MN|2|PM|×|PN|

          由韋達(dá)定理有:(t1t2)2=|t1t2|,∴(t1+t225t1t2,

          [4(a+1)]25×8(a+1),

          解得a

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4—5: 不等式選講

          已知函數(shù)f(x) 的定義域為R.

          ()求實數(shù)m的取值范圍;

          ()m的最大值為n,當(dāng)正數(shù)a,b滿足 n時,求7a4b的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切.

          1)求橢圓的方程;

          2M,N是橢圓上關(guān)于x軸對稱的兩點,P是橢圓上不同于M,N的一點,直線PM,PNx軸于DxD,0ExE,0),證明:xDxE為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)當(dāng)時,若函數(shù),)處導(dǎo)數(shù)相等,證明:;

          2)是否存在,使直線是曲線的切線,也是曲線的切線,而且這樣的直線是唯一的,如果存在,求出直線方程,如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險條例》規(guī)定,交強(qiáng)險是車主必須為機(jī)動車購買的險種,若普通7座以下私家車投保交強(qiáng)險第一年的費用(基準(zhǔn)保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是保費浮動機(jī)制,保費與上一、二、三個年度車輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:

          某機(jī)構(gòu)為了研究某一品牌普通7座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號私家車在下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

          以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

          (1)某家庭有一輛該品牌車且車齡剛滿三年,記為該車在第四年續(xù)保時的費用,求的分布列;

          (2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費高于基準(zhǔn)保費的車輛記為事故車.

          ①若該銷售商購進(jìn)三輛車(車齡已滿三年)該品牌二手車,求這三輛車中至少有2輛事故車的概率;

          ②假設(shè)購進(jìn)一輛事故車虧損4000元,一輛非事故車盈利8000元.若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求其獲得利潤的期望值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:今有曲池,上中周二丈,外周四丈,廣一丈,下中周一丈四尺,外周二丈四尺,廣五尺,深一丈,問積幾何?其意思為:今有上下底面皆為扇形的水池,上底中周2丈,外周4丈,寬1丈;下底中周14尺,外周長24尺,寬5尺;深1丈.問它的容積是多少?則該曲池的容積為( )立方尺(1丈=10尺,曲池:上下底面皆為扇形的土池,其容積公式為[上寬+下寬)下寬+上寬)深)

          A.B.1890C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ24ρsinθ)=0

          1)求曲線C的直角坐標(biāo)方程;

          2)若直線l的參數(shù)方程是α為參數(shù)),且α∈(,π)時,直線l與曲線C有且只有一個交點P,求點P的極徑.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線)的左、右焦點分別為,,過點且斜率為的直線交雙曲線于,兩點,線段的垂直平分線恰過點,則該雙曲線的離心率為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的一個焦點為,左右頂點分別為.經(jīng)過點的直線與橢圓交于兩點.

          1)求橢圓方程及離心率.

          2)當(dāng)直線的傾斜角為時,求線段的長;

          3)記的面積分別為,求最大值.

          查看答案和解析>>

          同步練習(xí)冊答案