已知橢圓

的左右焦點分別為

、

,離心率

,直線

經(jīng)過左焦點

.
(1)求橢圓

的方程;
(2)若

為橢圓

上的點,求

的范圍.
(1)

(2)

試題分析:解:(1)直線

與

的交點的坐標為

, 1分
則

的坐標為

. 2分
設焦距為2

,則

.

,

. 5分
則橢圓的方程為

. 6分
(2)當

點在橢圓的左右頂點時,

; 7分
當

點不在橢圓的左右頂點時,由定義可知:


.
當且僅當

時 “

”成立; 9分
在

中有

10分

, 12分
則

; 13分
由上述可得

的取值范圍為

. 14分
點評:考查了橢圓的性質(zhì)來求解方程,以及結合三角形中的余弦定理來得到角的范圍,屬于中檔題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線

的左右焦點分別是

,設

是雙曲線右支上一點,

在

上投影的大小恰好為

,且它們的夾角為

,則雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
橢圓C以拋物線

的焦點為右焦點,且經(jīng)過點A(2,3).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若

分別為橢圓的左右焦點,求

的角平分線所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線

的焦點與橢圓

的右焦點重合.(Ⅰ)求拋物線

的方程;
(Ⅱ)動直線

恒過點

與拋物線

交于
A、
B兩點,與

軸交于
C點,請你觀察并判斷:在線段
MA,
MB,
MC,
AB中,哪三條線段的長總能構成等比數(shù)列?說明你的結論并給出證明.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓

的左右焦點分別為

、

,由4個點

、

、

和

組成一個高為

,面積為

的等腰梯形.
(1)求橢圓的方程;
(2)過點

的直線和橢圓交于

、

兩點,求


面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知過拋物線y
2 =2px(p>0)的焦點F的直線x-my+m=0與拋物線交于A,B兩點,且△OAB(O為坐標原點)的面積為2

,則m
6+ m
4的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線C
l:y
2= 2x的焦點為F
1,拋物線C
2:y=2x
2的焦點為F
2,則過F
1且與F
1F
2垂直的直線

的一般方程式為
A.2x- y-l=0 | B.2x+ y-1=0 |
C.4x-y-2 =0 | D.4x-3y-2 =0 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系xOy中,以坐標原點O為極點x軸的正半軸為極軸建立極坐標系, 曲線C
1的極坐標方程為:

(1)求曲線C
1的普通方程
(2)曲線C
2的方程為

,設P、Q分別為曲線C
1與曲線C
2上的任意一點,求|PQ|的最小值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,點
A、B、C在數(shù)軸上,點
B、C關于點
A對稱,若點
A、B對應的實數(shù)分別是

和-1,則點
C所對應的實數(shù)是

查看答案和解析>>