日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù)且a≠0)滿足f(1-x)=f(1+x),且方程f(x)=x有等根.
          (1)求f(x)的解析式;
          (2)設g(x)=1-2f(x)(x>1)的反函數(shù)為g-1(x),若g-1(22x)>m(3-2x)對x∈[1,2]恒成立,求實數(shù)m的取值范圍.
          分析:(1)先由f(1-x)=f(1+x)得函數(shù)對稱軸,再由方程f(x)=x有等根,得方程f(x)=x的判別式等于零,最后解方程即可;
          (2)由(1)得出g(x)的解析式,再將x用y表示,最后交換x、y,即可求出反函數(shù)的解析式,從而得1+2x>m(3-2x)對x∈[1,2]恒成立,t=2x,轉(zhuǎn)化成關(guān)于t的一次函數(shù)恒成立問題,根據(jù)函數(shù)在[2,4]上的單調(diào)性建立不等式,從而求出所求.
          解答:解:(1)∵f(1-x)=f(1+x),
          ∴函數(shù)的對稱軸為x=1,即-
          b
          2a
          =1
          ∵方程f(x)=x有等根,∴△=(b-1)2=0
          ∴b=1,a=-
          1
          2

          f(x)=-
          1
          2
          x2+x

          (2)由(1)得g(x)=x2-2x+1,
          當x>1時,y=(x-1)2>0⇒x=1+
          y
          ⇒g-1(x)=1+
          x
          (x>0),
          ∵g-1(22x)>m(3-2x)對x∈[1,2]恒成立,
          即1+2x>m(3-2x)對x∈[1,2]恒成立,
          令t=2x,則(m+1)t+1-3m>0,對t∈[2,4]恒成立,
          2(m+1)+1-3m>0
          4(m+1)+1-3m>0

          ⇒-5<m<3.
          點評:本題考查了二次函數(shù)解析式的求法,解題時要熟練掌握二次函數(shù)的圖象特征,還考查了反函數(shù),以及反函數(shù)與原函數(shù)的之間的關(guān)系,同時考查了恒成立問題和最值問題,是一道綜合題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
          (Ⅰ)求f(x)的表達式;
          (Ⅱ)設函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

          查看答案和解析>>

          同步練習冊答案