【題目】如圖,五面體中,四邊形
是菱形,
是邊長(zhǎng)為2的正三角形,
,
.
(1)證明: ;
(2)若在平面
內(nèi)的正投影為
,求點(diǎn)
到平面
的距離.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(1)取的中點(diǎn)
,連
,得到
,進(jìn)而得出
,利用線面垂直的判定定理,證得
平面
,即得到
;
(2)取的中點(diǎn)
,連結(jié)
,由(1)證得
平面
,所以點(diǎn)
是
在平面
內(nèi)的正投影,設(shè)點(diǎn)
到平面
的距離為
,在
中,求解面積
,在
中,得
,利用
,即可得到結(jié)論.
試題解析:(1)證明:如圖,取的中點(diǎn)
,連
因?yàn)?/span>是邊長(zhǎng)為
的正三角形,所以
又四邊形是菱形,
,所以
是正三角形
所以
而,所以
平面
所以
(2)取的中點(diǎn)
,連結(jié)
由(1)知,所以
平面
,所以平面
⊥平面
而平面⊥平面
,平面
與平面
的交線為
,
所以平面
,即點(diǎn)
是
在平面
內(nèi)的正投影
設(shè)點(diǎn)到平面
的距離為
,則點(diǎn)
到平面
距離為
因?yàn)樵?/span>中,
,得
在中,
,得
所以由得
即
解得
,所以
到平面
的距離
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示, 是邊長(zhǎng)為3的正方形,
平面
與平面
所成角為
.
(Ⅰ)求證: 平面
;
(Ⅱ)設(shè)點(diǎn)是線段
上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)
的位置,使得
平面
,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知g(x)=﹣x2﹣3,f(x)是二次函數(shù),f(x)+g(x)是奇函數(shù),且當(dāng)x∈[﹣1,2]時(shí),f(x)的最小值為1,求f(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=e|x|+|x|,若關(guān)于x的方程f(x)=k有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的離心率為
,頂點(diǎn)為
,且
.
(1)求橢圓的方程;
(2)是橢圓
上除頂點(diǎn)外的任意點(diǎn),直線
交
軸于點(diǎn)
,直線
交
于點(diǎn)
.設(shè)
的斜率為
,
的斜率為
,試問(wèn)
是否為定值?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿(mǎn)足,其中a≠0,q:實(shí)數(shù)x滿(mǎn)足
.
(I)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍.
(II)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)t滿(mǎn)足f(0)=f(2)=2,f(1)=1.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[﹣1,2]時(shí),求y=f(x)的值域;
(3)設(shè)h(x)=f(x)﹣mx在[1,3]上是單調(diào)函數(shù),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com