日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在三棱柱ABC-A1B1C1中,側棱垂直于底面,數(shù)學公式為A1A上一點,且三棱錐D-ABC的體積為三棱柱ABC-A1B1C1的體積的數(shù)學公式
          (1)證明:平面BDC1⊥平面BDC;
          (2)在直線C1B上是否存在一點E,使A1E平行于平面BCD,若存在,求C1E與EB的比值;若不存在,試說明理由.

          (1)證明:∵三棱錐D-ABC的體積為三棱柱ABC-A1B1C1的體積的
          ∴AD=AA1,即D為AA1的中點
          ∴AC=AD=A1D=A1C1
          ∴∠CDA=∠C1DA1=45°
          ∴C1D⊥CD
          ∵BC⊥平面A1ACC1,
          ∴C1D⊥BC
          ∵CD∩BC=C
          ∴C1D⊥平面BCD
          ∵C1D?平面BDC1
          ∴平面BDC1⊥平面BDC;
          (2)解:存在C1B的中點E,使A1E平行于平面BCD,證明如下:
          取B1B的中點F,連接A1F,EF,A1E

          則A1F∥BD
          ∵EF∥B1C1∥BC,∴平面A1EF∥平面BDC,
          ∵A1E?平面A1EF
          ∴A1E∥平面BCD
          此時,C1E與EB的比值為1.
          分析:(1)先證明BC⊥平面A1ACC1,再證明C1D⊥平面BCD,即可證明平面BDC1⊥平面BDC;
          (2)存在C1B的中點E,使A1E平行于平面BCD,取B1B的中點F,連接A1F,EF,A1E,證明平面A1EF∥平面BDC,即可證明A1E∥平面BCD.
          點評:本題考查面面垂直,考查線面平行,考查學生分析解決問題的能力,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在三棱柱ABC-A'B'C'中,若E、F分別為AB、AC的中點,平面EB'C'F將三棱柱分成體積為V1、V2的兩部分,那么V1:V2為( 。
          A、3:2B、7:5C、8:5D、9:5

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
          5
          ,則此三棱柱的側視圖的面積為(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=60°,四邊形BCC1B1為矩形,若AB⊥BC且AB=4,BC=3
          (1)求證:平面A1CB⊥平面ACB1;
          (2)求三棱柱ABC-A1B1C1的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•通州區(qū)一模)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
          2
          ,CC1=4,M是棱CC1上一點.
          (Ⅰ)求證:BC⊥AM;
          (Ⅱ)若N是AB上一點,且
          AN
          AB
          =
          CM
          CC1
          ,求證:CN∥平面AB1M;
          (Ⅲ)若CM=
          5
          2
          ,求二面角A-MB1-C的大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分別在線段B1C1上,B1E=3EC1,AC=BC=CC1=4.
          (1)求證:BC⊥AC1;
          (2)試探究:在AC上是否存在點F,滿足EF∥平面A1ABB1,若存在,請指出點F的位置,并給出證明;若不存在,說明理由.

          查看答案和解析>>

          同步練習冊答案