【題目】為了調查患胃病是否與生活不規(guī)律有關,在患胃病與生活不規(guī)律這兩個分類變量的計算中,下列說法正確的是( )
A. 越大,“患胃病與生活不規(guī)律沒有關系”的可信程度越大.
B. 越大,“患胃病與生活不規(guī)律有關系”的可信程度越小.
C.若計算得 ,經查臨界值表知
,則在
個生活不規(guī)律的人中必有
人患胃病.
D.從統(tǒng)計量中得知有 的把握認為患胃病與生活不規(guī)律有關,是指有
的可能性使得推斷出現錯誤.
科目:高中數學 來源: 題型:
【題目】某公司為了解所經銷商品的使用情況,隨機問卷50名使用者,然后根據這50名的問卷評分數據,統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數據分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值并估計這50名使用者問卷評分數據的中位數;
(2)從評分在[40,60)的問卷者中,隨機抽取2人,求此2人評分都在[50,60)的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2016高考新課標II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數字不是1”,丙說:“我的卡片上的數字之和不是5”,則甲的卡片上的數字是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍,且經過點M(2,1),直線
平行OM,且與橢圓交于A、B兩個不同的點。
(Ⅰ)求橢圓方程;
(Ⅱ)若AOB為鈍角,求直線
在
軸上的截距
的取值范圍;
(Ⅲ)求證直線MA、MB與軸圍成的三角形總是等腰三角形。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 在回歸模型中,預報變量的值不能由解釋變量
唯一確定
B. 若變量,
滿足關系
,且變量
與
正相關,則
與
也正相關
C. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D. 以模型去擬合一組數據時,為了求出回歸方程,設
,將其變換后得到線性方程
,則
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.2018年某企業(yè)計劃引進新能源汽車生產設備,通過市場分析,全年需投入固定成本2500萬元,每生產x(百輛),需另投入成本萬元,且
.由市場調研知,每輛車售價5萬元,且全年內生產的車輛當年能全部銷售完.
(1)求出2018年的利潤L(x)(萬元)關于年產量x(百輛)的函數關系式;(利潤=銷售額-成本)
(2)2018年產量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為
,部分對應值如下表,
的導函數
的圖象如圖所示。
X | -1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 2 | 0 | 2 | 1 |
下列關于函數的命題:
①函數在
是減函數;
②如果當時,
的最大值是2,那么t的最大值為4;③函數
有4個零點,則
;
其中真命題的個數是( )
A. 3個 B. 2個 C. 1個 D. 0個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓上的點到它的兩個焦的距離之和為
,以橢圓
的短軸為直徑的圓
經過這兩個焦點,點
,
分別是橢圓
的左、右頂點.
()求圓
和橢圓
的方程.
()已知
,
分別是橢圓
和圓
上的動點(
,
位于
軸兩側),且直線
與
軸平行,直線
,
分別與
軸交于點
,
.求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求該函數的最大值;
(2)是否存在實數,使得該函數在閉區(qū)間
上的最大值為
?若存在,求出對應
的值;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com