日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)x1,x2是方程ln|x|=m(m是常數(shù))的兩根,則x1+x2的值為( 。
          分析:由已知中x1,x2是方程ln|x|=m(m為實(shí)常數(shù))的兩根,根據(jù)函數(shù)y=ln|x|-m的圖象關(guān)于y軸對稱,可得答案.
          解答:解:令函數(shù)y=ln|x|-m,則函數(shù)的圖象關(guān)于直線x=0即y軸對稱
          若x1,x2是方程ln|x|=m(m為實(shí)常數(shù))的兩根,
          則x1,x2是函數(shù)y=ln|x|-m的兩個零點(diǎn),其值必關(guān)于y軸對稱
          則x1+x2=0
          故答案為 C
          點(diǎn)評:本題考查的知識點(diǎn)是對數(shù)函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,其中分析出函數(shù)y=ln|x|-m的圖象關(guān)于直線x=0即y軸對稱是解答本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=
          1
          4
          x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點(diǎn),A(p0,
          1
          4
          p02)(p0≠0),作L的切線交y軸于點(diǎn)B.證明:對線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=
          |p0|
          2
          ;
          (2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,
          1
          4
          p
          2
          1
          ),E′(p2,
          1
          4
          p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          |p1|
          2

          (3)設(shè)D={ (x,y)|y≤x-1,y≥
          1
          4
          (x+1)2-
          5
          4
          }.當(dāng)點(diǎn)(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=數(shù)學(xué)公式x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點(diǎn),A(p0,數(shù)學(xué)公式p02)(p0≠0),作L的切線交y軸于點(diǎn)B.證明:對線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=數(shù)學(xué)公式;
          (2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1數(shù)學(xué)公式),E′(p2數(shù)學(xué)公式p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=數(shù)學(xué)公式
          (3)設(shè)D={ (x,y)|y≤x-1,y≥數(shù)學(xué)公式(x+1)2-數(shù)學(xué)公式}.當(dāng)點(diǎn)(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:廣東 題型:解答題

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=
          1
          4
          x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點(diǎn),A(p0
          1
          4
          p02)(p0≠0),作L的切線交y軸于點(diǎn)B.證明:對線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=
          |p0|
          2

          (2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1
          1
          4
          p21
          ),E′(p2
          1
          4
          p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          |p1|
          2

          (3)設(shè)D={ (x,y)|y≤x-1,y≥
          1
          4
          (x+1)2-
          5
          4
          }.當(dāng)點(diǎn)(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年廣東省高考數(shù)學(xué)研討會材料--2011年高考數(shù)學(xué)試題“紅黑榜”(解析版) 題型:解答題

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點(diǎn),A(p,p2)(p≠0),作L的切線交y軸于點(diǎn)B.證明:對線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=;
          (2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1),E′(p2,p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          (3)設(shè)D={ (x,y)|y≤x-1,y≥(x+1)2-}.當(dāng)點(diǎn)(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點(diǎn),A(p,p2)(p≠0),作L的切線交y軸于點(diǎn)B.證明:對線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=;
          (2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,),E′(p2,p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          (3)設(shè)D={ (x,y)|y≤x-1,y≥(x+1)2-}.當(dāng)點(diǎn)(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          同步練習(xí)冊答案