日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 己知:函數(shù)f(x)=x3+ax2+bx+c,在(-∞,-1),(2,+∞)上單凋遞增,在(-1,2)上單調(diào)遞減,不等式f(x)>x2-4x+5的解集為(4,+∞).
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)若函數(shù)h(x)=
          f′(x)3(x-2)
          -(m+1)ln(x+m)
          ,求h(x)的單調(diào)區(qū)間.
          分析:(Ⅰ)先根據(jù)函數(shù)的單調(diào)性可知f'(x)=3x2+2ax+b=0有兩個(gè)根-1,2,求出a和b,然后根據(jù)不等式f(x)>x2-4x+5的解集為(4,+∞)求出c,從而求出函數(shù)f(x)的解析式;
          (Ⅱ)先求出函數(shù)h(x)的解析式,然后討論m的取值范圍,根據(jù)導(dǎo)函數(shù)的符號與函數(shù)單調(diào)性的關(guān)系求出相應(yīng)的單調(diào)區(qū)間,從而求出所求.
          解答:解:(Ⅰ)在(-∞,-1),(2,+∞)上單凋遞增,在(-1,2)上單調(diào)遞減,
          ∴f'(x)=3x2+2ax+b=0有兩個(gè)根-1,2
          利用根與系數(shù)的關(guān)系可知a=-
          3
          2
          ,b=-6
          ∴f(x)=x3-
          3
          2
          x2-6x+c,
          ∵不等式f(x)>x2-4x+5的解集為(4,+∞).
          ∴c=-11
          ∴f(x)=x3-
          3
          2
          x2-6x-11,
           (Ⅱ)f'(x)=3x2-3x-6=3(x+1)(x-2),
          ∴h(x)=
          f′(x)
          3(x-2)
          -(m+1)ln(x+m)
          =(x+1)-(m+1)ln(x+m)(x>-m且,x≠2)
           當(dāng)m≤-2時(shí),-m≥2,定義域:(-m,+∞),
           h'(x)>0恒成立,h(x)在(-m,+∞)上單增;   
           當(dāng)-2<m≤-1時(shí),定義域:(-m,2)∪(2,+∞)
            h'(x)恒成立,h(x)在(-m,2)與(2,+∞)上單增;
           當(dāng)m>-1時(shí),-m<1,定義域:(-m,2)∪(2,+∞)
           由 h'(x)>0得x>1,由h'(x)<0 得x<1.
            故在(1,2),(2,+∞)上單增;在(-m,1)上單減,
          綜上所述,當(dāng)m≤-2時(shí),h(x)在(-m,+∞)上單增;
          當(dāng)-2<m≤-1時(shí),h(x)在(-m,2)與(2,+∞)上單增;
          當(dāng)m>-1時(shí),在(1,2),(2,+∞)上單增;在(-m,1)單減.
          點(diǎn)評:本題主要考查了函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,函數(shù)與方程的綜合運(yùn)用,是一道綜合題,同時(shí)考查了計(jì)算能力,轉(zhuǎn)化與劃歸的思想,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•自貢三模)己知.函數(shù)f(x)=
          x-4
          x+1
          (x≠-1)的反函數(shù)是f-1(x).設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對任意的正整數(shù)都有an=
          f-1(Sn) -19
          f-1(Sn)+1
          成立,且bn=f-1(an)•
          (I)求數(shù)列{bn}的通項(xiàng)公式;
          (II)記cn=b2n-b2n-1(n∈N),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對任意正整數(shù)n都有Tn
          3
          2
          ;
          (III)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn,已知正實(shí)數(shù)λ滿足:對任意正整數(shù)n,Rn≤λn恒成立,求λ的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

          己知奇函數(shù)f(x)的定義域?yàn)椋ǎ?/span>∞,00,+∞),且f(x)在(0,+∞)上是增函數(shù),f(1)=0.函數(shù)g(x)= x2+mx+12m,x[0,1].

          (1)   證明:函數(shù)f(x)在(-∞,0)上是增函數(shù);

          (2)   解關(guān)于x的不等式f(x)<0;

          (3)   當(dāng)x[0,1]時(shí),求使得g(x)<0f[g(x)]<0恒成立的m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年四川省成都市石室中學(xué)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          己知:函數(shù)f(x)=x3+ax2+bx+c,在(-∝,-1),(2,+∝)上單凋遞增,在(一1,2)上單調(diào)遞減,不等式f(x)>x2-4x+5的解集為(4,+∝).
          (I)求函數(shù)f(x)的解析式;
          (II)若函數(shù)h(x)=,求h(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年四川省自貢市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          己知.函數(shù)f(x)=(x≠-1)的反函數(shù)是f-1(x).設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對任意的正整數(shù)都有an=成立,且bn=f-1(an)•
          (I)求數(shù)列{bn}的通項(xiàng)公式;
          (II)記cn=b2n-b2n-1(n∈N),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對任意正整數(shù)n都有Tn
          (III)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn,已知正實(shí)數(shù)λ滿足:對任意正整數(shù)n,Rn≤λn恒成立,求λ的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案