日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得曲線C.

          1)寫出C的參數(shù)方程;

          2)設(shè)直線C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極坐標(biāo)建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

          【答案】1t為參數(shù));(2.

          【解析】

          試題(1)設(shè)為圓上的點(diǎn),在曲線C上任意取一點(diǎn)(x,y),再根據(jù),由于點(diǎn)在圓上,求出C的方程,化為參數(shù)方程.(2)解方程組求得的坐標(biāo),可得線段的中點(diǎn)坐標(biāo).再根據(jù)與l垂直的直線的斜率為,用點(diǎn)斜式求得所求的直線的方程,再根據(jù)可得所求的直線的極坐標(biāo)方程.

          1)設(shè)為圓上的點(diǎn),在已知變換下位C上點(diǎn)(xy),依題意,得,即曲線C的方程為.,故C得參數(shù)方程為t為參數(shù)).

          2)由解得:,或.

          不妨設(shè),則線段的中點(diǎn)坐標(biāo)為,所求直線的斜率為,于是所求直線方程為

          化極坐標(biāo)方程,并整理得

          ,即.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足

          |x-3|≤1 .

          (1)若為真,求實(shí)數(shù)的取值范圍;

          (2)若的充分不必要條件,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)若,求處的切線方程;

          (2)若對(duì)于任意的正數(shù),恒成立,求實(shí)數(shù)的值;

          (3)若函數(shù)存在兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=axcosx,a≠0

          1)若函數(shù)fx)為單調(diào)函數(shù),求a的取值范圍;

          2)若x∈[0,2π],求:當(dāng)a時(shí),函數(shù)fx)僅有一個(gè)零點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線,直線以及上一點(diǎn).圓的圓心在上,且與直線相切于點(diǎn).

          (1)求圓的方程;

          (2)求過點(diǎn),被圓截得弦長(zhǎng)為的直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(nN*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2b312b3a42a1,S1111b4.

          (1){an}{bn}的通項(xiàng)公式;

          (2)求數(shù)列{a2nbn}的前n項(xiàng)和(nN*)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,

          已知圓和圓.

          1)若直線過點(diǎn),且被圓截得的弦長(zhǎng)為

          求直線的方程;(2)設(shè)P為平面上的點(diǎn),滿足:

          存在過點(diǎn)P的無窮多對(duì)互相垂直的直線,

          它們分別與圓和圓相交,且直線被圓

          截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,橢圓的長(zhǎng)軸長(zhǎng)為4

          1)求橢圓的方程;

          2)已知直線與橢圓交于兩點(diǎn),是否存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐PABCD中,底面ABCD是直角梯形,ABCDBCCD,側(cè)面PAB為等邊三角形,ABBC2CD2

          (Ⅰ)證明:ABPD;

          (Ⅱ)若PD2,求直線PC與平面PAB所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案