日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列
          2
          ,
          5
          ,2
          2
          ,
          11
          ,…,則2
          5
          是該數(shù)列的(  )
          A、第6項B、第7項
          C、第10項D、第11項
          分析:觀察數(shù)列各項的特點,把第三項根號外的移到根號里面,只觀察被開方數(shù),可知數(shù)列是等差數(shù)列2,5,8,11,的每一項開方,所以用等差數(shù)列看出20是第七項.
          解答:解:由數(shù)列
          2
          ,
          5
          ,2
          2
          ,
          11
          ,
          2
          5
          ,
          8
          11
          ,
          可知數(shù)列是等差數(shù)列2,5,8,11,的每一項開方,
          而2
          5
          =
          20
          ,
          故選B.
          點評:本題要求理解數(shù)列及其有關(guān)概念;了解數(shù)列和函數(shù)之間的關(guān)系;了解數(shù)列的通項公式,并會用通項公式寫出數(shù)列的任意一項;對于比較簡單的數(shù)列,會根據(jù)其前幾項的特征寫出它的一個通項公式.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數(shù)列“例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對稱數(shù)列”.設(shè){bn}是項數(shù)為2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,23,…,2m-1依次為該數(shù)列中連續(xù)的前m項,則數(shù)列{bn}的前2010項和S2010可以是
          (1)22010-1     (2)21006-2       (3)2m+1-22m-2010-1
          其中正確命題的個數(shù)為( 。
          A、0B、1C、2D、3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          13、已知數(shù)列{an}的通項公式為an=(2n-1)•2n,我們用錯位相減法求其前n項和Sn:由Sn=1×2+3×22+5×23+…(2n-1)•2n得2Sn=1×22+3×23+5×24+…(2n-1)•2n+1,兩式項減得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)•2n+1,求得Sn=(2n-3)•2n+1+6.類比推廣以上方法,若數(shù)列{bn}的通項公式為bn=n2•2n,
          則其前n項和Tn=
          (n2-2n+3)•2n+1-6

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數(shù),且1≤i≤n),就稱該數(shù)列為“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11試寫出{bn}所有項
          2,5,8,11,8,5,2
          2,5,8,11,8,5,2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          兩千多年前,古希臘畢達哥拉斯學派的數(shù)學家曾經(jīng)在沙灘上研究數(shù)學問題,他們在沙灘上畫點或用小石子來表示數(shù),按照點或小石子能排列的形狀對數(shù)進行分類,如圖2中的實心點個數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個五角形數(shù)記作a1=1,第2個五角形數(shù)記作a2=5,第3個五角形數(shù)記作a3=12,第4個五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,得數(shù)列{an},則an-an-1=
          3n-2(n≥2)
          3n-2(n≥2)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)集合W是滿足下列兩個條件的無窮數(shù)列{an}的集合:①
          an+an+2
          2
          an+1
          ②an≤M,其中n∈N*,M是與n無關(guān)的常數(shù)
          (1)若{an}是等差數(shù)列,Sn是其前n項的和,a3=4,S3=18,試探究{Sn}與集合W之間的關(guān)系;
          (2)設(shè)數(shù)列{bn}的通項為bn=5n-2n,且{bn}∈W,M的最小值為m,求m的值;
          (3)在(2)的條件下,設(shè)Cn=
          1
          5
          [bn+(m-5)n]+
          2
          ,求證:數(shù)列{Cn}中任意不同的三項都不能成為等比數(shù)列.

          查看答案和解析>>

          同步練習冊答案