日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)a,b均為正數(shù),
          (Ⅰ)求證:
          (Ⅱ)如果依次稱、分別為a,b兩數(shù)的算術(shù)平均數(shù)、幾何平均數(shù)、調(diào)和平均數(shù).如右圖,C為線段AB上的點,令A(yù)C=a,CB=b,O為AB的垂線交半圓于D.連結(jié)OD,AD,BD.過點C作OD的垂線,垂足為E.圖中線段OD的長度是a,b的算術(shù)平均數(shù),請分別用圖中線段的長度來表示a,b兩數(shù)的幾何平均數(shù)和調(diào)和平均數(shù),并說明理由.

          【答案】分析:(I)由于a,b均為正數(shù),根據(jù)基本不等式,可得=,即可得出;
          (II)在直角三角形中,由DC為高,根據(jù)射影定理可得CD2=AC•CB,變形兩邊開方,得到CD長度為a,b的幾何平均數(shù);根據(jù)在直角三角形OCD中,由射影定理可得CD2=DE•CB,得到DE的長,再由DC≥DE,得到結(jié)果.
          解答:解:(I)證明:由于a,b均為正數(shù),根據(jù)基本不等式,可得=,即
          當(dāng)且僅當(dāng)a=b時,等號成立.
          (II)在Rt△ADB中DC為高,則由射影定理可得CD2=AC•CB,
          ∴CD=,即CD長度為a,b的幾何平均數(shù),
          在直角三角形OCD中,由射影定理可得CD2=DE•CB,
          ∴DE===,由DC≥DE,得,當(dāng)且僅當(dāng)a=b時,等號成立,
          ∴線段DE的長度分別為a,b的調(diào)和平均數(shù).
          點評:本題是一個新定義問題,解題過程中主要應(yīng)用直角三角形邊之間的比例關(guān)系,得到比例式,本題是一個平面幾何與代數(shù)中的平均數(shù)結(jié)合的問題,是一個綜合題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          19、設(shè)a,b均為正數(shù),且a≠b,求證:a3+b3>a2b+ab2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)a,b均為正數(shù),
          (Ⅰ)求證:
          ab
          2
          1
          a
          +
          1
          b

          (Ⅱ)如果依次稱
          a+b
          2
          、
          ab
          、
          2
          1
          a
          +
          1
          b
          分別為a,b兩數(shù)的算術(shù)平均數(shù)、幾何平均數(shù)、調(diào)和平均數(shù).如右圖,C為線段AB上的點,令A(yù)C=a,CB=b,O為AB的垂線交半圓于D.連結(jié)OD,AD,BD.過點C作OD的垂線,垂足為E.圖中線段OD的長度是a,b的算術(shù)平均數(shù),請分別用圖中線段的長度來表示a,b兩數(shù)的幾何平均數(shù)和調(diào)和平均數(shù),并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年海南省三亞一中高二(下)期中數(shù)學(xué)試卷B(文科)(解析版) 題型:解答題

          設(shè)a,b均為正數(shù),且a≠b,求證:a3+b3>a2b+ab2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):6.6 直接證明與間接證明(解析版) 題型:解答題

          設(shè)a,b均為正數(shù),且a≠b,求證:a3+b3>a2b+ab2

          查看答案和解析>>

          同步練習(xí)冊答案