日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由半橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (x≥0)與半橢圓
          x2
          b2
          +
          y2
          c2
          =1
          (x≤0)合成的曲線稱作“果圓”,如圖所示,其中a2=b2+c2,a>b>c>0.由右橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (x≥0)的焦點F0和左橢圓
          x2
          b2
          +
          y2
          c2
          =1
          (x≤0)的焦點F1,F(xiàn)2確定的△F0F1F2叫做果圓的焦點三角形,若果圓的焦點三角形為銳角三角形,則右橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (x≥0)的離心率的取值范圍為( 。
          A.(
          1
          3
          ,1)
          B.(
          2
          3
          ,1)
          C.(
          3
          3
          ,1)
          D.(0,
          3
          3
          )

          連結(jié)F0F1、F0F2,
          根據(jù)“果圓”關(guān)于x軸對稱,可得△F1F0F2是以F1F2為底面的等腰三角形,
          ∵△F0F1F2是銳角三角形,
          ∴等腰△F0F1F2的頂角為銳角,即∠F1F0F2∈(0,
          π
          2
          ).
          由此可得|0F0|>|0F1|,
          ∵|0F0|、|0F1|分別是橢圓
          x2
          a2
          +
          y2
          b2
          =1
          、
          x2
          b2
          +
          y2
          c2
          =1
          的半焦距,
          ∴c>
          b2-c2
          ,平方得c2>b2-c2,
          又∵b2=a2-c2,∴c2>a2-2c2,解得3c2>a2,
          兩邊都除以a2,得3•(
          c
          a
          )2
          >1,解之得
          c
          a
          3
          3

          ∵右橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (x≥0)的離心率e=
          c
          a
          ∈(0,1),
          ∴所求離心率e的范圍為(
          3
          3
          ,1).
          故選:C
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:不詳 題型:填空題

          已知橢圓方程為
          x2
          16
          +
          y2
          m2
          =1(m>0)
          ,直線y=
          2
          2
          x
          與該橢圓的一個交點M在x軸上的射影恰好是橢圓的右焦點,則m的值為______.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          橢圓的一個焦點到相應準線的距離為
          5
          4
          ,離心率為
          2
          3
          ,則橢圓的短軸長為( 。
          A.
          5
          2
          B.4
          5
          C.2
          5
          D.
          5

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          2
          2
          ,左、右焦點分別是F1,F(xiàn)2,過點F1的直線l交C于A,B兩點,且△ABF2的周長為4
          2
          .則橢圓C的方程為______.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          如圖,橢圓中心在坐標原點,F(xiàn)為左焦點,當
          FB
          AB
          時,其離心率為
          5
          -1
          2
          ,此類橢圓被稱為“黃金橢圓”,類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率為( 。
          A.
          5
          +1
          2
          B.
          5
          -1
          2
          C.
          5
          +1
          D.
          5
          -1

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          已知橢圓E:
          x2
          4
          +y2=1
          ,橢圓E的內(nèi)接平行四邊形的一組對邊分別經(jīng)過它的兩個焦點(如圖),則這個平行四邊形面積的最大值是______.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)上任意一點到兩焦點的距離分別為d1,d2,焦距為2c,若d1,2c,d2成等差數(shù)列,則橢圓的離心率為( 。
          A.
          1
          2
          B.
          2
          2
          C.
          3
          2
          D.
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          設(shè)直線l過點P(0,3),和橢圓
          x2
          9
          +
          y2
          4
          =1
          順次交于A、B兩點,則
          AP
          PB
          的取值范圍是______.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          【文科】已知點A,B是橢圓
          x2
          m2
          +
          y2
          n2
          =1(m>0,n>0)上兩點,且
          AO
          BO
          ,則λ=______.

          查看答案和解析>>

          同步練習冊答案