日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,F(xiàn)是拋物線x2=2py(p>0)的焦點(diǎn),點(diǎn)R(1,4)為拋物線內(nèi)一定點(diǎn),點(diǎn)Q為拋物線上一動點(diǎn),|QR|+|QF|的最小值為5.
          (1)求拋物線方程;
          (2)已知過點(diǎn)P(0,-1)的直線l與拋物線x2=2py(p>0)相交于A(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是該拋物線在A、B兩點(diǎn)處的切線,M、N分別是l1、l2與直線y=-1的交點(diǎn).求直線l的斜率的取值范圍并證明|PM|=|PN|.
          分析:(1)利用拋物線的定義,結(jié)合|QR|+|QF|的最小值為5,建立方程,即可求得拋物線的方程;
          (2)設(shè)直線l的方程與拋物線方程聯(lián)立,確定k的范圍,求出拋物線在A、B處的切線方程,令y=-1,可得M、N的橫坐標(biāo),利用韋達(dá)定理,可得橫坐標(biāo)互為相反數(shù),從而可得結(jié)論.
          解答:(1)解:設(shè)拋物線的準(zhǔn)線為QQ'⊥l于Q',過Q作QQ'⊥l于Q',過R作RR'⊥l于R',由拋物線定義知|QF|=|QQ'|,…(1分)
          ∴|QR|+|QF|=|QR|+|QQ'|≥|RR'|(折線段大于垂線段),當(dāng)且僅當(dāng)R、Q、R'三點(diǎn)共線取等號.…(3分)
          由題意知|RR′|=5,
          4+
          p
          2
          =5
          ,
          ∴p=2,故拋物線的方程為:x2=4y…(5分)
          (2)證明:由已知條件可知直線l的斜率存在且不為0,設(shè)直線l:y=kx-1,…(6分)
          y=kx-1
          x2=4y
          ,∴x2-4ky+4=0,…①…(7分)
          依題意,有△=16k2-16>0,∴k<-1或k>1;…(8分)
          由x2=4y,∴y=
          1
          4
          x2
          ,∴y′=
          1
          2
          x
          ,…(9分)
          所以拋物線在A處的切線l1的方程為:y-
          1
          4
          x
          2
          1
          =
          1
          2
          x1(x-x1)
          ,即y=
          1
          2
          x1x-
          1
          4
          x
          2
          1
          .…(10分)
          令y=-1,得xM=
          x
          2
          1
          -4
          2x1
          .…(11分)     
          同理,得xN=
          x
          2
          2
          -4
          2x2
          .…(12分)
          注意到x1、x2是方程①的兩個實根,故x1x2=4,即x2=
          4
          x1
          ,…(13分)
          從而有xN=
          x
          2
          2
          -4
          2x2
          =
          (
          4
          x1
          )
          2
          -4
          8
          x1
          =
          4-
          x
          2
          1
          2x1
          =-xM
          ,
          因此,|PM|=|PN|.…(14分)
          點(diǎn)評:本題考查拋物線的定義,考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),點(diǎn)A(4,2)為拋物線內(nèi)一定點(diǎn),點(diǎn)P為拋物線上一動點(diǎn),|PA|+|PF|的最小值為8.
          (1)求拋物線方程;
          (2)若O為坐標(biāo)原點(diǎn),問是否存在點(diǎn)M,使過點(diǎn)M的動直線與拋物線交于B,C兩點(diǎn),且以BC為直徑的圓恰過坐標(biāo)原點(diǎn),若存在,求出動點(diǎn)M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶八中高三(上)第五次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖所示,F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),點(diǎn)A(4,2)為拋物線內(nèi)一定點(diǎn),點(diǎn)P為拋物線上一動點(diǎn),|PA|+|PF|的最小值為8.
          (1)求拋物線方程;
          (2)若O為坐標(biāo)原點(diǎn),問是否存在點(diǎn)M,使過點(diǎn)M的動直線與拋物線交于B,C兩點(diǎn),且以BC為直徑的圓恰過坐標(biāo)原點(diǎn),若存在,求出動點(diǎn)M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年廣東省實驗中學(xué)考前熱身訓(xùn)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖所示,F(xiàn)是拋物線x2=2py(p>0)的焦點(diǎn),點(diǎn)R(1,4)為拋物線內(nèi)一定點(diǎn),點(diǎn)Q為拋物線上一動點(diǎn),|QR|+|QF|的最小值為5.
          (1)求拋物線方程;
          (2)已知過點(diǎn)P(0,-1)的直線l與拋物線x2=2py(p>0)相交于A(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是該拋物線在A、B兩點(diǎn)處的切線,M、N分別是l1、l2與直線y=-1的交點(diǎn).求直線l的斜率的取值范圍并證明|PM|=|PN|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)模擬試卷1(文科)(解析版) 題型:解答題

          如圖所示,F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),點(diǎn)A(4,2)為拋物線內(nèi)一定點(diǎn),點(diǎn)P為拋物線上一動點(diǎn),|PA|+|PF|的最小值為8.
          (1)求拋物線方程;
          (2)若O為坐標(biāo)原點(diǎn),問是否存在點(diǎn)M,使過點(diǎn)M的動直線與拋物線交于B,C兩點(diǎn),且以BC為直徑的圓恰過坐標(biāo)原點(diǎn),若存在,求出動點(diǎn)M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案