日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,曲線為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線.

          (1)求的普通方程和的直角坐標(biāo)方程;

          (2)若曲線交于,兩點,,的中點為,點,求的值.

          【答案】1的普通方程為,的直角坐標(biāo)方程為;(23.

          【解析】

          1)直接消去參數(shù)可得C1的普通方程;結(jié)合ρ2x2+y2xρcosθC2的直角坐標(biāo)方程;(2)將兩圓的方程作差可得直線AB的方程,寫出AB的參數(shù)方程,與圓C2聯(lián)立,化為關(guān)于t的一元二次方程,由參數(shù)t的幾何意義及根與系數(shù)的關(guān)系求解.

          1)曲線的普通方程為.

          ,得曲線的直角坐標(biāo)方程為.

          2)將兩圓的方程作差得直線的方程為.

          在直線上,設(shè)直線的參數(shù)方程為為參數(shù)),

          代入化簡得,所以,.

          因為點對應(yīng)的參數(shù)為,

          所以

          .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)求在區(qū)間上的值域;

          2)是否存在實數(shù),對任意給定的,在存在兩個不同的使得,若存在,求出的范圍,若不存在,說出理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系中,曲線為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          1)求曲線的極坐標(biāo)方程;

          2)已知點,直線的極坐標(biāo)方程為,它與曲線的交點為,,與曲線的交點為,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱中,平面平面,,.

          (1)求證:平面平面

          (2)若與平面所成的線面角為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線經(jīng)過點,過作傾斜角互補的兩條不同直線、.

          1)求拋物線的方程及準(zhǔn)線方程;

          2)設(shè)直線、分別交拋物線兩點(均不與重合,如圖),記直線的斜率為正數(shù),若以線段為直徑的圓與拋物線的準(zhǔn)線相切,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若,求曲線在點處的切線方程;

          2)討論函數(shù)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左右焦點分別為,該橢圓與軸正半軸交于點,且是邊長為的等邊三角形.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)過點任作一直線交橢圓于,兩點,平面上有一動點,設(shè)直線,的斜率分別為,,,且滿足,求動點的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,, ,, PA=AB=BC=2. EPC的中點.

          1)證明: ;

          2)求三棱錐P-ABC的體積;

          3 證明:平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的上下兩個焦點分別為, ,過點軸垂直的直線交橢圓、兩點, 的面積為,橢圓的離心力為

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)已知為坐標(biāo)原點,直線 軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案