日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為,橢圓的左焦點(diǎn)為,橢圓上任意點(diǎn)到的最遠(yuǎn)距離是,過(guò)直線軸的交點(diǎn)任作一條斜率不為零的直線與橢圓交于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.

          (1)求橢圓的方程;

          (2)求證:、、三點(diǎn)共線;

          (3)求面積的最大值.

          【答案】();()證明見解析;().

          【解析】

          ()由題意得到關(guān)于a,b,c的方程組,求得a,b的值即可確定橢圓方程;

          ()設(shè)直線的方程為,聯(lián)立直線方程與橢圓方程,結(jié)合韋達(dá)定理證明即可證得題中的結(jié)論.

          ()由題意可得的面積,結(jié)合均值不等式的結(jié)論確定面積的最大值即可.

          ()由題意可得:,解得:,

          故橢圓的離心率為:.

          ()結(jié)合()中的橢圓方程可得:,故,

          設(shè)直線的方程為

          聯(lián)立直線方程與橢圓方程:可得:

          .

          直線與橢圓相交,則:,

          解得:.

          設(shè),,

          則:,

          故:

          代入上式可得:,

          三點(diǎn)共線;

          ()結(jié)合()中的結(jié)論可得:

          的面積

          .

          當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故的面積的最大值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:極坐標(biāo)與參數(shù)方程

          在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).

          1)求曲線的普通方程;

          2)經(jīng)過(guò)點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線, 兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線ACBD的交點(diǎn),AB=2,∠BAD=60°MPD的中點(diǎn).

          (Ⅰ)求證:OM∥平面PAB;

          (Ⅱ)平面PBD⊥平面PAC;

          (Ⅲ)當(dāng)三棱錐CPBD的體積等于 時(shí),求PA的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

          )求數(shù)列的通項(xiàng)公式;

          )令.求數(shù)列的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;

          (Ⅲ)若恒成立,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】美國(guó)制裁中興,未來(lái)7年一顆芯片都不賣,這卻激發(fā)了中國(guó)“芯”的研究熱潮.某公司甲,乙,丙三個(gè)研發(fā)小組分別研發(fā),三種不同的芯片,現(xiàn)在用分層抽樣的方法從這些芯片中抽取若干件進(jìn)行質(zhì)量分析,有關(guān)數(shù)據(jù)見下表(單位:件).

          芯片

          數(shù)量

          抽取件數(shù)

          200

          600

          400

          2

          (Ⅰ)求的值;

          (Ⅱ)若在這抽出的樣品中隨機(jī)抽取2件送往某機(jī)構(gòu)進(jìn)行進(jìn)一步檢測(cè),求這2件芯片來(lái)自不同種類的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點(diǎn),側(cè)面PAD⊥底面ABCD.

          (1)求證:EF∥平面PAD;

          (2)若EF⊥PC,求證:平面PAB⊥平面PCD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知正方形的邊長(zhǎng)為4,,分別為,的中點(diǎn),以為棱將正方形折成如圖所示的的二面角,點(diǎn)在線段上且不與點(diǎn),重合,直線與由,三點(diǎn)所確定的平面相交,交點(diǎn)為

          (1)若的中點(diǎn),試確定點(diǎn)的位置,并證明直線平面;

          (2)若,求的長(zhǎng)度,并求此時(shí)點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知是橢圓上的一點(diǎn),從原點(diǎn)

          作兩條切線,分別交橢圓于點(diǎn)

          (1)若點(diǎn)在第一象限,且直線互相垂直,求圓的方程;

          (2)若直線的斜率存在,并記為,求的值;

          (3)試問(wèn)是否為定值?若是,求出該值;若不是,說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案