日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:=1(a>b>0)的焦距為4,且與橢圓x2=1有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同的兩點(diǎn)A、B.

          (1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時,求k的取值范圍.

           

          【答案】

          (1)=1;(2)(-∞,).

          【解析】

          試題分析:(1)求出已知橢圓離心率,結(jié)合焦距2c=4,可得a,b;(2)聯(lián)立方程組,依據(jù)點(diǎn)在圓內(nèi)部列出關(guān)系式求解.

          試題解析:(1)∵橢圓C的焦距為4,∴c=2.

          又∵橢圓x2=1的離心率為,∴橢圓C的離心率e=,∴a=2,b=2.

          ∴橢圓C的標(biāo)準(zhǔn)方程為=1.

          (2)設(shè)直線l的方程為y=kx+1,A(x1,y1),B(x2,y2),

          消去y,得(1+2k2)x2+4kx-6=0,∴x1+x2,x1x2.

          由(1)知橢圓C的右焦點(diǎn)F的坐標(biāo)為(2,0),

          ∵右焦點(diǎn)F在圓的內(nèi)部,∴·<0.∴(x1-2)(x2-2)+y1y2<0,

          即x1x2-2(x1+x2)+4+k2x1x2+k(x1+x2)+1<0.∴(1+k2)x1x2+(k-2)(x1+x2)+5

          =(1+k2+(k-2)·+5=<0,∴k<.

          經(jīng)檢驗(yàn),當(dāng)k<時,直線l與橢圓C相交.∴直線l的斜率k的取值范圍為(-∞,).

          考點(diǎn):橢圓方程得確定、直線與圓及橢圓的位置關(guān)系.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年泉州一中適應(yīng)性練習(xí)文)(12分)已知橢圓C=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為1的直線交橢圓CA,B兩點(diǎn),N為弦AB的中點(diǎn)。

          (1)求直線ONO為坐標(biāo)原點(diǎn))的斜率KON

          (2)對于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (09年湖北重點(diǎn)中學(xué)4月月考理)(13分

          已知橢圓C=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為1的直線交橢圓CA,B兩點(diǎn),N為弦AB

          (1)求直線ONO為坐標(biāo)原點(diǎn))的斜率KON ;

          1)           (2)對于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為1的直線交橢圓CAB兩點(diǎn),N為弦AB的中點(diǎn)。

          (1)求直線ONO為坐標(biāo)原點(diǎn))的斜率KON

          (2)對于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為1的直線交橢圓CA,B兩點(diǎn),N為弦AB的中點(diǎn)。

          (1)求直線ONO為坐標(biāo)原點(diǎn))的斜率KON ;

          (2)對于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆湖北省武漢市高三9月調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          已知橢圓C:=1(a>b>0)的離心率為,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時,坐標(biāo)原點(diǎn)O到l的距離為

          (Ⅰ)求a,b的值;

          (Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時,有成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.

           

          查看答案和解析>>

          同步練習(xí)冊答案