日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          a(x-1)x2
          ,其中a>0.
          (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
          (Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(其中e為自然對數(shù)的底數(shù))
          分析:(Ⅰ)先求導(dǎo)函數(shù),直接讓導(dǎo)函數(shù)大于0求出增區(qū)間,導(dǎo)函數(shù)小于0求出減區(qū)間即可;
          (Ⅱ)直接利用切線的斜率即為切點處的導(dǎo)數(shù)值以及切點是直線與曲線的共同點聯(lián)立方程即可求實數(shù)a的值;
          (Ⅲ)先求出g(x)的導(dǎo)函數(shù),分情況討論出函數(shù)在區(qū)間[1,e]上的單調(diào)性,進(jìn)而求得其在區(qū)間[1,e]上的最大值.
          解答:解:(Ⅰ)′因為函數(shù)f(x)=
          a(x-1)
          x2

          ∴f′(x)=
          [a(x-1)]′•x2-(x2)′a(x-1)
          x4
          =
          a(2-x)
          x3

          f′(x)>0?0<x<2,f′(x)<0?x<0,x>2,
          故函數(shù)在(0,2)上遞增,在(-∞,0)和(2,+∞)上遞減.
          (Ⅱ)設(shè)切點為(x,y),
          由切線斜率k=1=
          -a(x-
          2
          a
          )
          x3
          ,?x3=-ax+2,①
          由x-y-1=x-
          a(x-1)
          x2
          -1=0?(x2-a)(x-1)=0?x=1,x=±
          a

          把x=1代入①得a=1,
          把x=
          a
          代入①得a=1,
          把x=-
          a
          代入①得a=-1,
          ∵a>0.
          故所求實數(shù)a的值為1
          (Ⅲ)∵g(x)=xlnx-x2f(x)=xlnx-a(x-1),
          ∴g′(x)=lnx+1-a,且g′(1)=1-a,g′(e)=2-a.
          當(dāng)a<1時,g′(1)>0,g′(e)>0,故g(x)在區(qū)間[1,e]上遞增,其最大值為g(e)=a+e(1-a);
          當(dāng)1<a<2時,g′(1)<0,g′(e)>0,故g(x)在區(qū)間[1,e]上先減后增且g(1)=0,g(e)>0.所以g(x)在區(qū)間[1,e]上的最大值為g(e)=a+e(1-a);
          當(dāng)a>2時,g′(1),0,g′(e)<0,g(x)在區(qū)間[1,e]上遞減,故最大值為g(1)=0.
          點評:本題主要考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,是高考的?碱}型.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-
          12x+1

          (1)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
          (2)確定a的值,使f(x)為奇函數(shù);
          (3)當(dāng)f(x)為奇函數(shù)時,求f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)
          a-x  ,x≤0
          1  ,0<x≤3
          (x-5)2-a,x>3
          (a>0且a≠1)圖象經(jīng)過點Q(8,6).
          (1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
          (2)求函數(shù)f(t)-9的零點;
          (3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-
          1
          2x+1
          ,若f(x)為奇函數(shù),則a=(  )
          A、
          1
          2
          B、2
          C、
          1
          3
          D、3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a(x-1)x2
          ,其中a>0.
          (I)求函數(shù)f(x)的單調(diào)區(qū)間;
          (II)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
          (III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-
          12x-1
          ,(a∈R)
          (1)求f(x)的定義域;
          (2)若f(x)為奇函數(shù),求a的值;
          (3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案