日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 8、已知f(x)=ax2+bx+c(a≠0),其方程f(x)=x無實根.現(xiàn)有四個命題①方程f([f(x)]=x)也一定沒有實數(shù)根;②a>0若,則不等式f[f(x)]≥0對一切x∈R成立;③若a<0,則必存在實數(shù)x0使不等式f[f(x0)]>x0成立;④若a+b+c=0,則不等式f[f(x)]<x對一切x∈R成立.其中真命題的個數(shù)是(  )
          分析:方程f(x)=x無實根,即ax2+(b-1)x+c=0無實根,則可知△<0,根據(jù)次條件可以判斷真命題的個數(shù).
          解答:解:由題意方程f(x)=x無實根,即ax2+(b-1)x+c=0無實根,則可知△<0,則判斷命題①正確,
          若a>0,則f(x)開口向上,但無法判斷△是否小于0,故命題②錯誤,
          若a<0,則f(x)開口向下,根據(jù)命題②可判斷命題③正確,
          由以上判斷,可知命題④正確,
          故真命題個數(shù)為3;
          故選C.
          點評:本題主要考查函數(shù)的△判斷方程的計算.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          例2:已知f(x)=ax2+bx+c的圖象過點(-1,0),是否存在常數(shù)a、b、c,使不等式x≤f(x)≤
          x2+12
          對一切實數(shù)x都成立?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ax2+bx,若1≤f(1)≤3,-1≤f(-1)≤1,則f(2)的取值范圍是
          [2,10]
          [2,10]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ax2-blnx+2x(a>0,b>0)在區(qū)間(
          1
          2
          ,1)
          上不單調(diào),則
          3b-2
          3a+2
          的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ax2+bx+c(a≠0),g(x)=f[f(x)]
          ①若f(x)無零點,則g(x)>0對?x∈R成立;
          ②若f(x)有且只有一個零點,則g(x)必有兩個零點;
          ③若方程f(x)=0有兩個不等實根,則方程g(x)=0不可能無解
          其中真命題的個數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=ax2-3ax+a2-1(a<0),則f(3),f(-3),f(
          3
          2
          )從小到大的順序是
          f(-3)<f(3)<f(
          3
          2
          f(-3)<f(3)<f(
          3
          2

          查看答案和解析>>

          同步練習(xí)冊答案