日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (13分)如圖,在矩形ABCD中,AB=2,BC=,為等邊三角形,又平面PAD⊥平面ABCD.

          (Ⅰ)若在邊BC上存在一點(diǎn)Q,使PQ⊥QD,求的取值范圍;

          (Ⅱ)當(dāng)邊BC上存在唯一點(diǎn)Q,使PQ⊥QD時(shí),求二面角A-PD-Q的余弦值.

          解:(Ⅰ)取AD中點(diǎn)O,連接PO,則PO⊥AD

          ∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD………2分

          建立如圖的空間直角坐標(biāo)系,則,設(shè)Q(t,2,0),

          =(t,2,-),=(t,2,0).            
          ∵PQ⊥QD,∴

          ,等號(hào)成立當(dāng)且僅當(dāng)t=2.

          的取值范圍為. …………7分

          (Ⅱ)由(Ⅰ)知,當(dāng)=8時(shí),邊BC上存在唯一點(diǎn)Q,使PQ⊥QD.

          此時(shí)Q(2,2,0),D(4,0,0), .                               

          設(shè)是平面的法向量,=(2,2,),

          =(-2,2,0).            
          ,得.

          ,則  是平面的一個(gè)法向量.                 

          是平面的一個(gè)法向量,                  

          設(shè)二面角A-PD-Q為,由

          ∴二面角A-PD-Q的余弦值為.  ……13分    

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿分12分)

          如圖,在矩形ABCD中,已知A(2,0)、C(-2,2),點(diǎn)PBC邊上移動(dòng),線段OP的垂直平分線交y軸于點(diǎn)E,點(diǎn)M滿足(Ⅰ)求點(diǎn)M的軌跡方程;

          (Ⅱ)已知點(diǎn)F(0,),過(guò)點(diǎn)F的直線l與點(diǎn)M的軌跡相交于Q、R兩點(diǎn),且求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2014屆重慶市高二12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          (本題滿分13分)如圖,在四棱錐中,底面是矩形,知。

          (1)證明:

          (2)求異面直線所成的角的余弦值;

          (3)求二面角的大小余弦值。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿分13分)

          如圖,在矩形木板中,,,在二面角的墻角處圍出一個(gè)側(cè)棱與底面垂直的直三棱柱的儲(chǔ)物倉(cāng),其中要求垂直于地面的木板兩邊與墻面貼緊。

          (Ⅰ)問(wèn)應(yīng)怎樣圍才能使儲(chǔ)物倉(cāng)的容積最大?并求出這個(gè)最大值?
          (Ⅱ)在(Ⅰ)的條件下, 直線AB是否存在點(diǎn)P使得直線CP與平面所成角,若有則找出P點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿分13分)

          如圖,在矩形ABCD中,AB=2,BC=,為等邊三角形,又平面PAD⊥平面ABCD.w.w.w.k.

          s.5(Ⅰ)若在邊BC上存在一點(diǎn)Q,使PQ⊥QD,求的取值范圍;

          (Ⅱ)當(dāng)邊BC上存在唯一點(diǎn)Q,使PQ⊥QD時(shí),求二面角A-PD-Q的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案