分析:由題設(shè)條件知,當(dāng)n≤8時(shí),|a
n|中第一項(xiàng)是21,第二項(xiàng)起是以13為首項(xiàng),-2為公差的等差數(shù)列,由此可求出當(dāng)n≤8時(shí)S
n′的表達(dá)式.當(dāng)n≥9時(shí),此時(shí)|a
n|的前8項(xiàng)之和
S8′=21+(13+1)=70,|a
n|的后n-8項(xiàng)是以1為首項(xiàng),2為公差的等差數(shù)列,由此可求出當(dāng)n≥9時(shí)S
n′的表達(dá)式.
解答:解:∵S
n=n
2-16n-6,∴S
n-1=(n-1)
2-16(n-1)-6,a
1=S
1=-21,
a
n=S
n-S
n-1=2n-17,當(dāng)n=1時(shí),2n-17=-15≠a
1,∴
an=.
由2n-17≥0得
n≥.∴當(dāng)n≤8時(shí),|a
n|=-a
n=
,可算出當(dāng)n=8時(shí),
S8′=21+(13+1)=70,當(dāng)n≤8時(shí),|a
n|中第一項(xiàng)是21,第二項(xiàng)起是以13為首項(xiàng),-2為公差的等差數(shù)列,∴
Sn′=21+13(n-1)+×(-2)=--n
2+16n+6.
當(dāng)n≥9時(shí),此時(shí)|a
n|的前8項(xiàng)之和已得出為70,|a
n|的后n-8項(xiàng)是以1為首項(xiàng),2為公差的等差數(shù)列,后n-8項(xiàng)的和為
Tn=(n-8)×1+×2=n
2-16n+64,∴S
n′=S
8′+T
n=n
2-16n+134.
∴S
n′=
| -n2+16n+6,n≤8 | n2-16n+134,n≥9 |
| |
.
故答案為:
| -n2+16n+6,n≤8 | n2-16n+134,n≥9 |
| |
.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.