日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C過兩點(diǎn)A(1,-1),B(2,-2),且圓心C在直線2x-y-4=0上.
          (1)求圓C的方程;
          (2)設(shè)P是直線3x-4y-5=0上的動(dòng)點(diǎn),PM,PN是圓C的兩條切線,切點(diǎn)分別為M,N,求四邊形PMCN面積的最小值.
          分析:(1)設(shè)圓心坐標(biāo),根據(jù)圓C過兩點(diǎn)A(1,-1),B(2,-2),利用兩點(diǎn)間的距離公式,即可求得圓心與半徑,從而可得圓C的方程;
          (2)四邊形PMCN的面積是兩個(gè)三角形的面積的和,因?yàn)镃M⊥PM,CM=1,顯然PM最小時(shí),四邊形面積最小,此時(shí)PC最小,由此可得結(jié)論.
          解答:解:(1)設(shè)圓心坐標(biāo)為(a,2a-4),則
          ∵圓C過兩點(diǎn)A(1,-1),B(2,-2),
          (a-1)2+(2a-3)2
          =
          (a-2)2+(2a-2)2

          ∴a=1,∴圓心坐標(biāo)為(1,-2)圓的半徑為1
          ∴圓C的方程為(x-1)2+(y+2)2=1;
          (2)解:由題意過點(diǎn)P作圓C的兩條切線,切點(diǎn)分別為M,N,
          可知四邊形PMCN的面積是兩個(gè)三角形的面積的和,因?yàn)镃M⊥PM,CM=1,
          顯然PM最小時(shí),四邊形面積最小,此時(shí)PC最小
          ∵P是直線3x-4y-5=0上的動(dòng)點(diǎn),
          ∴PC最小值=
          |3+8-5|
          9+16
          =
          6
          5
          ,
          ∴PM最小值=
          36
          25
          -1
          =
          11
          5

          ∴四邊形PMCN面積的最小值為
          1
          2
          ×
          11
          5
          ×1
          =
          11
          5
          點(diǎn)評(píng):本題考查圓的方程,考查四邊形面積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在xOy坐標(biāo)平面內(nèi),已知圓C過點(diǎn)A(1,1)和點(diǎn)B(1,5),且圓心C在直線2x+y-2=0上.
          (1)求圓C的方程;
          (2)求過點(diǎn)A且與圓C相切的直線方程;
          (3)已知斜率為-1的直線l與圓C相交于P,Q兩點(diǎn),且CP⊥CQ,試求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知圓C過兩點(diǎn)A(1,-1),B(2,-2),且圓心C在直線2x-y-4=0上.
          (1)求圓C的方程;
          (2)設(shè)P是直線3x-4y-5=0上的動(dòng)點(diǎn),PM,PN是圓C的兩條切線,切點(diǎn)分別為M,N,求四邊形PMCN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省德州市武城二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知圓C過兩點(diǎn)A(1,-1),B(2,-2),且圓心C在直線2x-y-4=0上.
          (1)求圓C的方程;
          (2)設(shè)P是直線3x-4y-5=0上的動(dòng)點(diǎn),PM,PN是圓C的兩條切線,切點(diǎn)分別為M,N,求四邊形PMCN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年山東省某校高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

          已知圓C過兩點(diǎn)A(1,-1),B(2,-2),且圓心C在直線2x-y-4=0上.
          (1)求圓C的方程;
          (2)設(shè)P是直線3x-4y-5=0上的動(dòng)點(diǎn),PM,PN是圓C的兩條切線,切點(diǎn)分別為M,N,求四邊形PMCN面積的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案